diff --git a/generated_alpha/2026/01/10/Pro_deepseek-ai_DeepSeek-V3.1-Terminus_185123.txt b/generated_alpha/2026/01/10/Pro_deepseek-ai_DeepSeek-V3.1-Terminus_185123.txt new file mode 100644 index 0000000..021ea2a --- /dev/null +++ b/generated_alpha/2026/01/10/Pro_deepseek-ai_DeepSeek-V3.1-Terminus_185123.txt @@ -0,0 +1,39 @@ +reverse(ts_rank(ts_delta(fnd6_capxv, 63), 252)) + +multiply(ts_rank(ts_decay_linear(fnd6_oiadps, 21), 126), reverse(ts_rank(fnd6_newa2v1300_oiadp, 63))) + +subtract(ts_rank(ts_delta(pv13_com_rk_au, 21), 126), ts_rank(ts_zscore(fnd6_ciother, 63), 252)) + +multiply(ts_rank(ts_av_diff(fnd6_eventv110_gdwlieps12, 21), 126), reverse(ts_rank(fnd6_newqv1300_ciotherq, 63))) + +if_else(ts_rank(ts_delta(nws18_sse, 21), 126) > 0.5, ts_rank(ts_decay_linear(rp_nip_ratings, 21), 126), reverse(ts_rank(fn_comp_not_rec_stock_options_a, 63))) + +multiply(ts_rank(ts_backfill(fnd6_eventv110_gdwliepsq, 21), 126), reverse(ts_rank(ts_delta(fn_op_lease_min_pay_due_in_2y_a, 63), 252))) + +subtract(ts_rank(ts_corr(fnd6_newa2v1300_oiadp, fnd6_oiadps, 21), 126), ts_rank(ts_std_dev(fnd6_ciother, 63), 252)) + +multiply(ts_rank(ts_sum(fnd6_newqv1300_ciotherq, 21), 126), reverse(ts_rank(ts_mean(fn_def_tax_liab_a, 63), 252))) + +if_else(ts_rank(ts_delta(news_max_up_amt, 21), 126) > 0.6, ts_rank(ts_product(fnd6_capxv, 21), 126), reverse(ts_rank(fn_comp_not_rec_stock_options_q, 63))) + +multiply(ts_rank(ts_covariance(fnd6_oiadps, fnd6_newa2v1300_oiadp, 21), 126), reverse(ts_rank(ts_av_diff(fnd6_eventv110_gdwlieps12, 63), 252))) + +subtract(ts_rank(ts_arg_max(fnd6_capxv, 21), 126), ts_rank(ts_arg_min(fnd6_ciother, 63), 252)) + +multiply(ts_rank(ts_count_nans(fnd6_newqv1300_ciotherq, 21), 126), reverse(ts_rank(ts_delay(fn_op_lease_min_pay_due_in_2y_a, 63), 252))) + +if_else(ts_rank(ts_step(1), 126) > 0.7, ts_rank(ts_scale(fnd6_newa2v1300_oiadp, 21), 126), reverse(ts_rank(fn_def_tax_liab_a, 63))) + +multiply(ts_rank(ts_quantile(fnd6_oiadps, 21), 126), reverse(ts_rank(ts_regression(fnd6_capxv, fnd6_ciother, 63), 252))) + +subtract(ts_rank(ts_zscore(fnd6_eventv110_gdwliepsq, 21), 126), ts_rank(ts_backfill(fn_comp_not_rec_stock_options_a, 63), 252)) + +multiply(ts_rank(ts_mean(news_max_up_amt, 21), 126), reverse(ts_rank(ts_std_dev(rp_nip_ratings, 63), 252))) + +if_else(ts_rank(ts_delta(nws18_sse, 21), 126) > 0.8, ts_rank(ts_sum(fnd6_newqv1300_ciotherq, 21), 126), reverse(ts_rank(fn_op_lease_min_pay_due_in_2y_a, 63))) + +multiply(ts_rank(ts_corr(pv13_com_rk_au, fnd6_oiadps, 21), 126), reverse(ts_rank(ts_av_diff(fnd6_eventv110_gdwlieps12, 63), 252))) + +subtract(ts_rank(ts_product(fnd6_capxv, 21), 126), ts_rank(ts_delay(fn_def_tax_liab_a, 63), 252)) + +multiply(ts_rank(ts_arg_min(fnd6_newa2v1300_oiadp, 21), 126), reverse(ts_rank(ts_count_nans(fn_comp_not_rec_stock_options_q, 63), 252))) \ No newline at end of file diff --git a/generated_alpha/2026/01/10/Qwen_Qwen3-VL-235B-A22B-Instruct_185224.txt b/generated_alpha/2026/01/10/Qwen_Qwen3-VL-235B-A22B-Instruct_185224.txt new file mode 100644 index 0000000..ac0ba6a --- /dev/null +++ b/generated_alpha/2026/01/10/Qwen_Qwen3-VL-235B-A22B-Instruct_185224.txt @@ -0,0 +1,37 @@ +ts_rank(fnd6_oiadps, 60) > 0.9 + +ts_decay_linear(fnd6_ciother, 30) < 0.1 + +group_zscore(fnd6_newa2v1300_oiadp, pv13_h_min2_focused_sector) + +ts_zscore(fnd6_eventv110_gdwlieps12, 90) > 1.5 + +ts_arg_max(fnd6_newqv1300_ciotherq, 45) < 5 + +ts_scale(fnd6_capxv, 60) > 0.8 + +group_rank(fnd6_eventv110_gdwliepsq, pv13_h_min24_500_sector) + +ts_corr(fnd6_oiadps, fnd6_ciother, 30) < -0.3 + +ts_std_dev(fnd6_newa2v1300_oiadp, 20) > 0.5 + +ts_mean(fnd6_newqv1300_ciotherq, 10) < 0.05 + +ts_backfill(fnd6_eventv110_gdwliaq, 10, 1, "NAN") + +ts_quantile(fnd6_capxv, 60, "uniform") > 0.95 + +group_neutralize(fnd6_oiadps, pv13_h_min52_1k_sector) + +ts_delta(fnd6_ciother, 5) > 0.1 + +ts_sum(fnd6_newa2v1300_oiadp, 15) < 0.2 + +ts_av_diff(fnd6_eventv110_gdwlieps12, 30) > 0.3 + +ts_regression(fnd6_newqv1300_ciotherq, fnd6_oiadps, 20, 0, 1) + +group_scale(fnd6_capxv, pv13_h2_min2_1k_sector) + +ts_count_nans(fnd6_eventv110_gdwliaq, 10) > 2 \ No newline at end of file diff --git a/generated_alpha/2026/01/10/deepseek-ai_DeepSeek-V3.2-Exp_185146.txt b/generated_alpha/2026/01/10/deepseek-ai_DeepSeek-V3.2-Exp_185146.txt new file mode 100644 index 0000000..398f538 --- /dev/null +++ b/generated_alpha/2026/01/10/deepseek-ai_DeepSeek-V3.2-Exp_185146.txt @@ -0,0 +1,17 @@ +ts_rank(divide(ts_delta(fnd6_oiadps, 63), ts_delay(fnd6_oiadps, 63)), 252) +ts_rank(ts_delta(fnd6_capxv, 63), 252) +ts_rank(ts_delta(fnd6_ciother, 63), 252) +ts_rank(ts_delta(fnd6_eventv110_gdwlieps12, 63), 252) +ts_rank(ts_delta(fnd6_eventv110_gdwliepsq, 63), 252) +ts_rank(ts_delta(fnd6_newa2v1300_oiadp, 63), 252) +ts_rank(ts_delta(fnd6_newqeventv110_gdwliaq, 63), 252) +ts_rank(ts_delta(fnd6_newqv1300_ciotherq, 63), 252) +ts_rank(ts_delta(anl4_netdebt_flag, 63), 252) +ts_rank(ts_delta(news_max_up_amt, 63), 252) +ts_rank(ts_delta(nws18_sse, 63), 252) +ts_rank(ts_delta(rp_nip_ratings, 63), 252) +ts_rank(ts_delta(fn_comp_not_rec_stock_options_a, 63), 252) +ts_rank(ts_delta(fn_comp_not_rec_stock_options_q, 63), 252) +ts_rank(ts_delta(fn_def_tax_liab_a, 63), 252) +ts_rank(ts_delta(fn_op_lease_min_pay_due_in_2y_a, 63), 252) +ts_rank(ts_delta(forward_price_120, 63), 252) \ No newline at end of file diff --git a/main.py b/main.py index 90ad1c7..b62737d 100644 --- a/main.py +++ b/main.py @@ -2,7 +2,6 @@ import os import random import sys -import json import openai import httpx import csv @@ -15,7 +14,9 @@ PROJECT_PATH = os.path.join(os.path.abspath(__file__).split('AlphaGenerator')[0] PREPARE_PROMPT = os.path.join(PROJECT_PATH, 'prepare_prompt') KEYS_TEXT = os.path.join(PREPARE_PROMPT, 'keys_text.txt') -SELECT_DATA_SET_QTY = 30 +TEMPERATURE = 0.1 + +USE_AI = 1 SILICONFLOW_API_KEY = "sk-pvdiisdowmuwkrpnxsrlhxaovicqibmlljwrwwvbbdjaitdl" SILICONFLOW_BASE_URL = "https://api.siliconflow.cn/v1" @@ -160,7 +161,11 @@ def call_siliconflow(prompt, model): response = client.chat.completions.create( model=model, - messages=[{"role": "user", "content": prompt}] + messages=[ + {"role": "system", "content": "你是一个专业的量化投资专家,擅长编写Alpha因子。"}, + {"role": "user", "content": prompt} + ], + temperature=TEMPERATURE ) return response.choices[0].message.content @@ -299,9 +304,10 @@ def main(): # # 如果需要手动在页面段模型, 使用提示词, 打开这个, 将生成的提示词存到本地 manual_prompt(prompt) - # for model in MODELS: - # # 如果需要使用模型, 打开这个 - # call_ai(prompt, model) + if USE_AI: + for model in MODELS: + # 如果需要使用模型, 打开这个 + call_ai(prompt, model) if __name__ == "__main__": diff --git a/main_new_story.py b/main_new_story.py new file mode 100644 index 0000000..e53d899 --- /dev/null +++ b/main_new_story.py @@ -0,0 +1,195 @@ +# -*- coding: utf-8 -*- +import os +import sys +import openai +from datetime import datetime + +sys.path.append(os.path.join(os.path.abspath(__file__).split('AlphaGenerator')[0] + 'AlphaGenerator')) +PROJECT_PATH = os.path.join(os.path.abspath(__file__).split('AlphaGenerator')[0] + 'AlphaGenerator') + +NEW_STORY_PROMPT = os.path.join(PROJECT_PATH, 'new_story_prompt') + +TEMPERATURE = 0.1 + +USE_AI = 1 + +SILICONFLOW_API_KEY = "sk-pvdiisdowmuwkrpnxsrlhxaovicqibmlljwrwwvbbdjaitdl" +SILICONFLOW_BASE_URL = "https://api.siliconflow.cn/v1" +MODELS = [ + 'Pro/deepseek-ai/DeepSeek-V3.1-Terminus', + # 'deepseek-ai/DeepSeek-V3.2-Exp', + # 'Qwen/Qwen3-VL-235B-A22B-Instruct', + # 'MiniMaxAI/MiniMax-M2', + # 'zai-org/GLM-4.6', + # 'inclusionAI/Ring-flash-2.0', + # 'zai-org/GLM-4.6', + # 'inclusionAI/Ling-flash-2.0', + # 'inclusionAI/Ring-flash-2.0', +] + +def load_prompt(): + """读取多份financial_logic_X.txt文件(X为0-9的数字)""" + result = "" + try: + for i in range(10): # 0-9,因为您说数字不会超过1位数 + filename = f"financial_logic_{i}.txt" + filepath = os.path.join(NEW_STORY_PROMPT, filename) + + if os.path.exists(filepath): + with open(filepath, 'r', encoding='utf-8') as f: + content = f.read() + result += content + "\n\n" # 每个文件之间加空行分隔 + print(f"已加载文件: {filename}") + else: + # 如果文件不存在,继续检查下一个 + continue + + return result.rstrip("\n\n") # 移除末尾的空行 + + except Exception as e: + print(f"读取提示词文件出错: {e}") + return "" + +def end_prompt(): + """读取结束提示词文件""" + try: + # 假设结束提示词文件名为 end_prompt.txt + end_prompt_file = os.path.join(NEW_STORY_PROMPT, 'end_prompt.txt') + if os.path.exists(end_prompt_file): + with open(end_prompt_file, 'r', encoding='utf-8') as f: + result = f.read() + else: + result = "" + return result + except Exception as e: + print(f"读取结束提示词文件出错: {e}") + return "" + +def call_siliconflow(prompt, model): + try: + client = openai.OpenAI( + api_key=SILICONFLOW_API_KEY, + base_url=SILICONFLOW_BASE_URL + ) + + response = client.chat.completions.create( + model=model, + messages=[ + {"role": "system", "content": "你是一个专业的量化投资专家,编写创新的金融逻辑/策略"}, + {"role": "user", "content": prompt} + ], + temperature=TEMPERATURE + ) + + return response.choices[0].message.content + + except openai.AuthenticationError: + print("API密钥错误") + except openai.RateLimitError: + print("调用频率限制") + except openai.APIError as e: + print(f"API错误: {e}") + except Exception as e: + print(f"其他错误: {e}") + exit(1) + +def save_finally_prompt(finally_prompt): + """保存最终生成的提示词""" + try: + # 获取当前日期和时间 + now = datetime.now() + year = str(now.year) # 年份,例如 2026 + month = now.strftime("%m") # 月份,例如 01 + day = now.strftime("%d") # 日,例如 10 + + # 构建目录路径 + base_dir = "manual_new_story_prompt" + year_dir = os.path.join(base_dir, year) + month_dir = os.path.join(year_dir, month) + day_dir = os.path.join(month_dir, day) + + # 创建目录(如果不存在) + for directory in [base_dir, year_dir, month_dir, day_dir]: + if not os.path.exists(directory): + os.makedirs(directory) + print(f"已创建目录: {directory}") + + # 生成文件名(包含时间戳,避免重复) + timestamp = now.strftime("%Y%m%d_%H%M%S") + filename = f"prompt_{timestamp}.txt" + filepath = os.path.join(day_dir, filename) + + # 保存提示词到文件 + with open(filepath, 'w', encoding='utf-8') as f: + f.write(finally_prompt) + + print(f"提示词已保存到: {filepath}") + return filepath + + except Exception as e: + print(f"保存提示词时出错: {e}") + return None + +def save_ai_result(ai_result, model_name): + """保存AI生成的结果""" + try: + # 获取当前日期和时间 + now = datetime.now() + year = str(now.year) # 年份,例如 2026 + month = now.strftime("%m") # 月份,例如 01 + day = now.strftime("%d") # 日,例如 10 + + # 构建目录路径 + base_dir = "ai_generated_new_story" + year_dir = os.path.join(base_dir, year) + month_dir = os.path.join(year_dir, month) + day_dir = os.path.join(month_dir, day) + + # 创建目录(如果不存在) + for directory in [base_dir, year_dir, month_dir, day_dir]: + if not os.path.exists(directory): + os.makedirs(directory) + print(f"已创建目录: {directory}") + + # 清理模型名称中的特殊字符,用于文件名 + safe_model_name = model_name.replace('/', '_').replace('\\', '_').replace(':', '_') + + # 生成文件名(包含时间戳和模型名) + timestamp = now.strftime("%Y%m%d_%H%M%S") + filename = f"result_{safe_model_name}_{timestamp}.txt" + filepath = os.path.join(day_dir, filename) + + # 保存结果到文件 + with open(filepath, 'w', encoding='utf-8') as f: + f.write(ai_result) + + print(f"AI结果已保存到: {filepath}") + return filepath + + except Exception as e: + print(f"保存AI结果时出错: {e}") + return None + +def main(): + finally_prompt = "" + + prompt = load_prompt() + + if prompt: + finally_prompt += prompt + + end_prompt_text = end_prompt() + + if end_prompt_text: + finally_prompt += end_prompt_text + + save_finally_prompt(finally_prompt) + + if USE_AI: + for model in MODELS: + result = call_siliconflow(finally_prompt, model) + save_ai_result(result, model) + + +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/manual_new_story_prompt/2026/01/10/prompt_20260110_184021.txt b/manual_new_story_prompt/2026/01/10/prompt_20260110_184021.txt new file mode 100644 index 0000000..319fac4 --- /dev/null +++ b/manual_new_story_prompt/2026/01/10/prompt_20260110_184021.txt @@ -0,0 +1,165 @@ +负债增值 +[[假设]] +负债公允价值上升可能意味着公司承担了高于预期的成本。这种情况可能恶化公司的财务健康状况,进而导致盈利能力下降或引发财务困境。 +[[实施方案]] +基于基本面数据,当负债公允价值在一年内出现上升时建立空头仓位,反之则建立多头仓位。 +[[实施优化建议]] +能否通过缩短观测周期(例如季度数据)来提升策略准确性? + +递延收入 +[[假设]] +递延收入较高的公司在未来确认收入时,往往会给市场带来超预期表现。 +[[实施方案]] +fnd6_drc字段代表递延收入。为提高数据字段覆盖度,需使用时序回填算子。将递延收入除以总资产以消除企业规模影响。 +[[实施优化建议]] +建议采用横截面算子代替原始比率值来确定股票权重。可运用分组算子对同类股票进行横向比较。 + +降低负债水平 +[[假设]] +对负债相较过往有所减少的公司建立多头仓位,反之对负债增加的公司建立空头仓位。 +[[实施方案]] +采用基础数据“负债”验证该假设,使用时序分位数算子分析该字段过去六个月的变化趋势。 +[[阿尔法因子优化建议]] +利用算子的驱动参数对负债数据进行分布形态转换。 + +财务杠杆效应 +[[假设]] +高负债资产比率的企业——若财务状况稳健、现金流充裕——常将债务作为战略工具推动扩张性增长。通过有效运用财务杠杆,这类公司将借贷资金投入高潜力项目,从而更可能获得超额收益。 +[[实施方案]] +采用"负债"与"资产"数据构建比率指标。 +[[阿尔法因子优化建议]] +该比率在不同行业间差异显著,是否值得采用替代性行业中性化处理方案? + +社交媒体效应 +[[假设]] +表现不佳的股票在社交媒体平台上通常会被更频繁地讨论,因此可能产生更高的相对情绪讨论量,建议考虑对这类股票建立空头仓位。 +[[实施方案]] +若监测到情绪讨论量增加,则通过社交媒体数据字段施加负权重配置。 + +估值偏离波动空头策略 +[[假设]] +价值因子与动量因子在股票中通常不相关,若某只股票同时呈现高动量与高价值评分相关性,则表明其股价与内在价值存在偏离——据此我们对这类股票建立空头仓位。 +[[实施方案]] +使用ts_corr()函数测算过去三年间估值评分与动量评分的相关性,通过ts_backfill()算子对前期缺失数据进行回填。 +[[阿尔法因子优化建议]] +建议运用分组算子与模型数据,在同类股票组内进行横向比较分析。 + +网络依存度 +[[假设]] +数据字段中较高的枢纽评分意味着企业客户拥有广泛业务连接,而较低评分则表明合作伙伴集中度较高。若企业的客户枢纽评分偏低,说明其客户合作伙伴较少,可能更依赖该企业。这对企业股票具有积极意义,意味着被替代风险较低,因此长期持有此类股票或是明智选择。 +[[实施方案]] +基于价量数据,对过去两年客户枢纽评分持续较低的企业股票建立多头仓位。 +[[阿尔法因子优化建议]] +在现有表达式基础上叠加横截面算子是否有助于提升策略表现? + +新闻驱动型波动率 +[[假设]] +新闻发布后股价波动剧烈的公司股票,往往受到市场情绪分化影响,可能引发剧烈波动行情。建议在近期新闻发布导致的极端波动阶段回避交易。 +[[实施方案]] +使用'news_session_range'新闻数据字段,通过'ts_backfill'算子提升数据覆盖度。结合'ts_arg_max'算子识别过去一季度内达到最大波动值的交易天数距离当前的时间间隔。该间隔天数越短,股票在阿尔法向量中的配置权重越低。 +[[阿尔法因子优化建议]] +近期新闻事件的影响时效有限,采用对接近零值数据快速调整阿尔法权重的算子(而非均等处理远期数据)能否提升策略表现?同时,使用交易条件限定算子是否有助于降低换手率? + +隐含波动率价差预测因子 +[[假设]] +若看涨期权未平仓量高于看跌期权未平仓量,基于隐含波动率价差强度指标,股票可能出现上涨行情;反之则可能下跌。 +[[实施方案]] +使用'trade_when'算子,以看涨-看跌期权未平仓量比值为条件。当该比值小于1时,基于隐含波动率价差强度指标建立股票多头仓位(采用期权数据)。 +[[阿尔法因子优化建议]] +基于自建分组(如历史波动率分组)对阿尔法因子进行自定义中性化处理,能否提升细分市场的策略表现?可结合分档算子或分层算子与排序算子实现自定义中性化。 + + + +研发转化滞后效应 + +[[假设]] +高研发投入的公司若未能及时将研发成果转化为商业产出,可能面临资本效率低下和未来增长动力不足的风险。这类公司通常具有较高的研发费用资本化率,但专利产出或新产品收入占比偏低,市场可能在一段时间后重新评估其研发效率,导致股价回调。 + +[[实施方案]] +基于研发费用资本化金额与专利授权数量(或新产品销售收入)构建“研发转化效率比”。使用时序滞后算子将专利数据滞后6-12个月以匹配研发投入周期,再通过ts_mean计算过去三年的平均转化效率。对效率持续偏低(后30%)的公司建立空头仓位,对效率显著提升(前30%)的公司建立多头仓位。 + +[[阿尔法因子优化建议]] +不同行业的研发周期和转化模式差异巨大(如医药vs软件)。是否可采用行业动态分档,在各自行业队列内计算转化效率的分位数排名,以消除行业特性带来的偏差? + +供应链韧性溢价 + +--- + +[[假设]] +拥有多元化、抗冲击供应链的公司在面临全球性或区域性供应链中断时,表现出更强的营收稳定性和更快的恢复能力。这种韧性在危机期间被市场低估,但在多次冲击后会被逐步定价,形成长期超额收益。 + +[[实施方案]] +整合供应商集中度、关键物料替代源数量、物流枢纽分布广度等数据字段,构建“供应链韧性评分”。使用时序波动率算子计算该评分在过往供应链危机事件期(如疫情、地缘冲突)内的稳定性,并对稳定性高的公司赋予正向权重。采用ts_zscore对评分进行标准化,结合横截面排序动态调整仓位。 + +[[实施优化建议]] +建议引入事件驱动算子,仅在监测到供应链压力指数(如全球物流延误指数)突破阈值时触发该因子,以提升策略的敏锐度和稀疏性,降低非危机时期的无效换手。 + +--- + +碳排放强度收敛交易 + +[[假设]] +在强监管或碳税预期升温的背景下,碳排放强度显著高于行业平均的公司将面临更大的合规成本或声誉风险,其估值可能受压;而低于平均的公司则可能获得政策红利或绿色溢价。两者间的差距会随着政策推进而逐步收敛。 + +[[实施方案]] +使用公司碳排放总量与营收的比率,计算其与行业平均值的偏离度(横截面z值)。通过ts_decay_linear算子对偏离度进行时间加权,赋予近期偏差更高权重。对偏离度持续扩大且处于高位的公司建立空头,对偏离度收窄或持续低位的公司建立多头。 + +[[阿尔法因子优化建议]] +能否结合舆情数据,对“碳税立法进展”“ESG基金流入”等主题新闻进行情感分析,构建动态加权系数?当政策舆情升温时,放大该因子的权重分配,以捕捉事件催化下的收敛加速行情。 + +--- + +管理层薪酬激励错配因子 + +[[假设]] +管理层薪酬结构中若短期激励占比过高,可能导致决策短视,损害长期价值;而长期股权激励与公司长期业绩(如3年ROIC、客户留存率)挂钩较好的公司,更可能实现可持续增长。市场可能逐步识别并奖励这种治理优势。 + +[[实施方案]] +提取管理层薪酬明细字段,计算“长期激励占比”(股权激励价值/总薪酬)与“长期业绩挂钩强度”(薪酬条款中与3年以上业绩指标挂钩的比例)。使用ts_corr计算两者在过去五年的滚动相关性。对相关性高且持续提升的公司赋予正向阿尔法权重。 + +[[实施优化建议]] +建议引入股东治理数据(如机构股东持股比例、投票权集中度),作为调节变量。在治理监督较强的公司群体中,该因子的预测力可能更显著,可采用条件算子进行分层处理。 + +--- + +客户生命周期价值动量 + +[[假设]] +订阅制或高复购率行业(如SaaS、消费会员)中,客户生命周期价值(LTV)的加速增长或衰减,领先于营收变化。LTV增长动能强的公司,其未来现金流稳定性更高,应享有估值溢价;动能衰减则预示基本面临顶。 + +[[实施方案]] +基于客户新增数量、流失率、客单价等字段,通过ts_growth算子计算LTV的季度环比增长率。使用时序动量算子(如ts_rank对过去4个季度的增长率进行排序),对动量处于持续上升通道的公司建立多头仓位。采用行业中性化处理,仅在细分赛道(如企业级SaaS)内进行横截面比较。 + +[[阿尔法因子优化建议]] +为降低噪声,可结合财报电话会文本分析,提取管理层对“客户健康度”“留存趋势”的定性评论,构建情绪调整因子。当量化LTV动量与文本情绪一致时,增强信号权重;当背离时,降低权重或屏蔽信号。 + +--- + +ESG争议事件修复效应 +[[假设]] + +ESG争议事件爆发后,市场往往存在短期过度反应,导致股价偏离内在价值。若公司在争议后及时采取有效整改措施(如完善合规体系、发布整改报告、引入第三方监督),其ESG表现将逐步修复,市场情绪也会随之回暖,股价大概率回归合理区间,此类公司可建立多头仓位;反之,对争议后无整改动作、ESG表现持续恶化的公司,应建立空头仓位以规避风险。 + +[[实施方案]] + +筛选过去12个月内发生ESG争议事件的标的,跟踪事件爆发后3个月、6个月、12个月的整改进展及ESG表现变化趋势。通过时序分析工具量化整改措施的落地成效,结合股价波动数据,构建“争议严重程度-整改效率-股价修复幅度”的关联指标,对整改成效显著且股价尚未充分修复的标的配置正向权重。 + +[[阿尔法因子优化建议]] + +建议按ESG争议类型(环境违规、社会责任缺失、公司治理缺陷)进行分组,不同类型争议的修复周期与市场敏感度差异较大,分组后可提升因子针对性。同时,引入行业ESG基准值做中性化处理,消除行业属性对ESG表现及整改难度的影响;可叠加流动性因子过滤,避免因股价修复过程中流动性不足导致的交易成本上升。帮我写一份类似这样的金融逻辑的描述, +如果你不清楚我有什么数据集字段, 可以不用说, 只需要逻辑描述清晰就行 +输出的格式和我上面给你的例子一样, +但是要创新一个金融逻辑研究方向 + +先生成一份中文的, 格式如下: + +输出格式: +**名称** +... +**假设** +... +**实施方案** +... +**阿尔法因子优化建议** + +然后再将生成出来的内容, 翻译一份英文,格式和中文一样 \ No newline at end of file diff --git a/manual_prompt/2026/01/10/manual_prompt_20260110185107.txt b/manual_prompt/2026/01/10/manual_prompt_20260110185107.txt new file mode 100644 index 0000000..3a616b4 --- /dev/null +++ b/manual_prompt/2026/01/10/manual_prompt_20260110185107.txt @@ -0,0 +1,225 @@ +任务指令 +**Name** +Institutional Herding Reversal Effect +**Hypothesis** +When a large number of institutional investors concentrate on buying a particular stock within a short period, it can create a "herding effect," potentially driving the stock price away from its fundamental value. However, such concentrated positioning is often accompanied by diminishing informational advantages and increasing liquidity needs. Once market sentiment reverses or a negative catalyst emerges, institutions might be forced to sell simultaneously, leading to sharp price reversals. Therefore, establishing short positions in stocks with a significant recent surge in institutional concentration and long positions in stocks where institutional ownership has stabilized after a period of disorderly selling may capture the alpha generated by this behavioral finance phenomenon. +**Implementation Plan** +Utilize data on changes in institutional ownership holdings. Calculate the quarterly change rate of institutional ownership and its cross-sectional percentile rank. Employ the `ts_rank` operator to identify stocks with abnormally high growth in institutional ownership (e.g., top 10%). Simultaneously, use the `ts_decay_linear` operator to apply time decay to selling pressure, identifying stocks where ownership has stabilized after a period of selling. Assign negative weights to the former and positive weights to the latter. +**Alpha Factor Optimization Suggestions** +The impact of institutional behavior varies across market cap styles (e.g., persistence might be stronger in large-caps, while reversal effects could be more violent in small-caps). Would it be beneficial to group stocks by market capitalization and calculate the abnormality of institutional behavior within each group to enhance the factor's robustness? Furthermore, incorporating overall market liquidity conditions (e.g., using the `trade_when` operator) to overweight this factor specifically during periods of tightening liquidity might better capture reversal opportunities arising from forced institutional selling. + +*=========================================================================================* +输出格式: +输出必须是且仅是纯文本。 +每一行是一个完整、独立、语法正确的WebSim表达式。 +严禁任何形式的解释、编号、标点包裹(如引号)、Markdown格式或额外文本。 +===================== !!! 重点(输出方式) !!! ===================== +现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。 +不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合 +**输出格式**(一行一个表达式, 每个表达式中间需要添加一个空行, 只要表达式本身, 不需要赋值, 不要解释, 不需要序号, 也不要输出多余的东西): +表达式 +表达式 +表达式 +... +表达式 +================================================================= +重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。 +以下是我的账号有权限使用的操作符, 请严格按照操作符, 以及我提供的数据集, 进行生成,组合 20 个alpha: +不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合 + +================================================================= +以下是错误的组合, 请勿类似的操作: +Operator ts_product does not support event inputs +Operator ts_zscore does not support event inputs +Operator ts_mean does not support event inputs +Operator ts_scale does not support event inputs +Operator add does not support event inputs +Operator sign does not support event inputs +Operator subtract does not support event inputs +Operator ts_delta does not support event inputs +Operator ts_rank does not support event inputs +Operator greater does not support event inputs +Operator ts_av_diff does not support event inputs +Operator ts_quantile does not support event inputs +Operator ts_count_nans does not support event inputs +Operator ts_covariance does not support event inputs +Operator ts_arg_min does not support event inputs +Operator divide does not support event inputs +Operator ts_corr does not support event inputs +Operator multiply does not support event inputs +Operator if_else does not support event inputs +Operator ts_sum does not support event inputs +Operator ts_delay does not support event inputs +Operator group_zscore does not support event inputs +Operator ts_arg_max does not support event inputs +Operator ts_std_dev does not support event inputs +Operator ts_backfill does not support event inputs + +以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子 + +========================= 操作符开始 ======================================= +注意: Operator: 后面的是操作符(是可以使用的), +Description: 此字段后面的是操作符对应的描述或使用说明(禁止使用, 仅供参考), Description字段后面的内容是使用说明, 不是操作符 +特别注意!!!! 必须按照操作符字段Operator的使用说明生成 alphaOperator: abs(x) +Description: Absolute value of x +Operator: add(x, y, filter = false) +Description: Add all inputs (at least 2 inputs required). If filter = true, filter all input NaN to 0 before adding +Operator: densify(x) +Description: Converts a grouping field of many buckets into lesser number of only available buckets so as to make working with grouping fields computationally efficient +Operator: divide(x, y) +Description: x / y +Operator: inverse(x) +Description: 1 / x +Operator: log(x) +Description: Natural logarithm. For example: Log(high/low) uses natural logarithm of high/low ratio as stock weights. +Operator: max(x, y, ..) +Description: Maximum value of all inputs. At least 2 inputs are required +Operator: min(x, y ..) +Description: Minimum value of all inputs. At least 2 inputs are required +Operator: multiply(x ,y, ... , filter=false) +Description: Multiply all inputs. At least 2 inputs are required. Filter sets the NaN values to 1 +Operator: power(x, y) +Description: x ^ y +Operator: reverse(x) +Description: - x +Operator: sign(x) +Description: if input > 0, return 1; if input < 0, return -1; if input = 0, return 0; if input = NaN, return NaN; +Operator: signed_power(x, y) +Description: x raised to the power of y such that final result preserves sign of x +Operator: sqrt(x) +Description: Square root of x +Operator: subtract(x, y, filter=false) +Description: x-y. If filter = true, filter all input NaN to 0 before subtracting +Operator: and(input1, input2) +Description: Logical AND operator, returns true if both operands are true and returns false otherwise +Operator: if_else(input1, input2, input 3) +Description: If input1 is true then return input2 else return input3. +Operator: input1 < input2 +Description: If input1 < input2 return true, else return false +Operator: input1 <= input2 +Description: Returns true if input1 <= input2, return false otherwise +Operator: input1 == input2 +Description: Returns true if both inputs are same and returns false otherwise +Operator: input1 > input2 +Description: Logic comparison operators to compares two inputs +Operator: input1 >= input2 +Description: Returns true if input1 >= input2, return false otherwise +Operator: input1!= input2 +Description: Returns true if both inputs are NOT the same and returns false otherwise +Operator: is_nan(input) +Description: If (input == NaN) return 1 else return 0 +Operator: not(x) +Description: Returns the logical negation of x. If x is true (1), it returns false (0), and if input is false (0), it returns true (1). +Operator: or(input1, input2) +Description: Logical OR operator returns true if either or both inputs are true and returns false otherwise +Operator: days_from_last_change(x) +Description: Amount of days since last change of x +Operator: hump(x, hump = 0.01) +Description: Limits amount and magnitude of changes in input (thus reducing turnover) +Operator: kth_element(x, d, k) +Description: Returns K-th value of input by looking through lookback days. This operator can be used to backfill missing data if k=1 +Operator: last_diff_value(x, d) +Description: Returns last x value not equal to current x value from last d days +Operator: ts_arg_max(x, d) +Description: Returns the relative index of the max value in the time series for the past d days. If the current day has the max value for the past d days, it returns 0. If previous day has the max value for the past d days, it returns 1 +Operator: ts_arg_min(x, d) +Description: Returns the relative index of the min value in the time series for the past d days; If the current day has the min value for the past d days, it returns 0; If previous day has the min value for the past d days, it returns 1. +Operator: ts_av_diff(x, d) +Description: Returns x - tsmean(x, d), but deals with NaNs carefully. That is NaNs are ignored during mean computation +Operator: ts_backfill(x,lookback = d, k=1, ignore="NAN") +Description: Backfill is the process of replacing the NAN or 0 values by a meaningful value (i.e., a first non-NaN value) +Operator: ts_corr(x, y, d) +Description: Returns correlation of x and y for the past d days +Operator: ts_count_nans(x ,d) +Description: Returns the number of NaN values in x for the past d days +Operator: ts_covariance(y, x, d) +Description: Returns covariance of y and x for the past d days +Operator: ts_decay_linear(x, d, dense = false) +Description: Returns the linear decay on x for the past d days. Dense parameter=false means operator works in sparse mode and we treat NaN as 0. In dense mode we do not. +Operator: ts_delay(x, d) +Description: Returns x value d days ago +Operator: ts_delta(x, d) +Description: Returns x - ts_delay(x, d) +Operator: ts_mean(x, d) +Description: Returns average value of x for the past d days. +Operator: ts_product(x, d) +Description: Returns product of x for the past d days +Operator: ts_quantile(x,d, driver="gaussian" ) +Description: It calculates ts_rank and apply to its value an inverse cumulative density function from driver distribution. Possible values of driver (optional ) are "gaussian", "uniform", "cauchy" distribution where "gaussian" is the default. +Operator: ts_rank(x, d, constant = 0) +Description: Rank the values of x for each instrument over the past d days, then return the rank of the current value + constant. If not specified, by default, constant = 0. +Operator: ts_regression(y, x, d, lag = 0, rettype = 0) +Description: Returns various parameters related to regression function +Operator: ts_scale(x, d, constant = 0) +Description: Returns (x - ts_min(x, d)) / (ts_max(x, d) - ts_min(x, d)) + constant. This operator is similar to scale down operator but acts in time series space +Operator: ts_std_dev(x, d) +Description: Returns standard deviation of x for the past d days +Operator: ts_step(1) +Description: Returns days' counter +Operator: ts_sum(x, d) +Description: Sum values of x for the past d days. +Operator: ts_zscore(x, d) +Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean: (x - tsmean(x,d)) / tsstddev(x,d). This operator may help reduce outliers and drawdown. +Operator: normalize(x, useStd = false, limit = 0.0) +Description: Calculates the mean value of all valid alpha values for a certain date, then subtracts that mean from each element +Operator: quantile(x, driver = gaussian, sigma = 1.0) +Description: Rank the raw vector, shift the ranked Alpha vector, apply distribution (gaussian, cauchy, uniform). If driver is uniform, it simply subtract each Alpha value with the mean of all Alpha values in the Alpha vector +Operator: rank(x, rate=2) +Description: Ranks the input among all the instruments and returns an equally distributed number between 0.0 and 1.0. For precise sort, use the rate as 0 +Operator: scale(x, scale=1, longscale=1, shortscale=1) +Description: Scales input to booksize. We can also scale the long positions and short positions to separate scales by mentioning additional parameters to the operator +Operator: winsorize(x, std=4) +Description: Winsorizes x to make sure that all values in x are between the lower and upper limits, which are specified as multiple of std. +Operator: zscore(x) +Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean +Operator: vec_avg(x) +Description: Taking mean of the vector field x +Operator: vec_sum(x) +Description: Sum of vector field x +Operator: bucket(rank(x), range="0, 1, 0.1" or buckets = "2,5,6,7,10") +Description: Convert float values into indexes for user-specified buckets. Bucket is useful for creating group values, which can be passed to GROUP as input +Operator: trade_when(x, y, z) +Description: Used in order to change Alpha values only under a specified condition and to hold Alpha values in other cases. It also allows to close Alpha positions (assign NaN values) under a specified condition +Operator: group_backfill(x, group, d, std = 4.0) +Description: If a certain value for a certain date and instrument is NaN, from the set of same group instruments, calculate winsorized mean of all non-NaN values over last d days +Operator: group_mean(x, weight, group) +Description: All elements in group equals to the mean +Operator: group_neutralize(x, group) +Description: Neutralizes Alpha against groups. These groups can be subindustry, industry, sector, country or a constant +Operator: group_rank(x, group) +Description: Each elements in a group is assigned the corresponding rank in this group +Operator: group_scale(x, group) +Description: Normalizes the values in a group to be between 0 and 1. (x - groupmin) / (groupmax - groupmin) +Operator: group_zscore(x, group) +Description: Calculates group Z-score - numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean. zscore = (data - mean) / stddev of x for each instrument within its group. +========================= 操作符结束 ======================================= + +========================= 数据字段开始 ======================================= +注意: data_set_name: 后面的是数据字段(可以使用), description: 此字段后面的是数据字段对应的描述或使用说明(不能使用), description_cn字段后面的内容是中文使用说明(不能使用) + +{'data_set_name': '可以使用:forward_price_120', 'description': '不可使用,仅供参考:Forward price at 120 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put.'} +{'data_set_name': '可以使用:fnd6_capxv', 'description': '不可使用,仅供参考:Capital Expend Property, Plant and Equipment Schd V'} +{'data_set_name': '可以使用:fnd6_ciother', 'description': '不可使用,仅供参考:Comp. Inc. - Other Adj.'} +{'data_set_name': '可以使用:fnd6_eventv110_gdwlieps12', 'description': '不可使用,仅供参考:Impairment of Goodwill Basic EPS Effect 12MM'} +{'data_set_name': '可以使用:fnd6_eventv110_gdwliepsq', 'description': '不可使用,仅供参考:Impairment of Goodwill Basic EPS Effect'} +{'data_set_name': '可以使用:fnd6_newa2v1300_oiadp', 'description': '不可使用,仅供参考:Operating Income After Depreciation'} +{'data_set_name': '可以使用:fnd6_newqeventv110_gdwliaq', 'description': '不可使用,仅供参考:Impairment of Goodwill After-tax'} +{'data_set_name': '可以使用:fnd6_newqv1300_ciotherq', 'description': '不可使用,仅供参考:Comp Inc - Other Adj'} +{'data_set_name': '可以使用:fnd6_oiadps', 'description': '不可使用,仅供参考:Operating Income after Depreciation'} +{'data_set_name': '可以使用:anl4_netdebt_flag', 'description': '不可使用,仅供参考:Net debt - forecast type (revision/new/...)'} +{'data_set_name': '可以使用:pv13_com_rk_au', 'description': '不可使用,仅供参考:the HITS authority score of competitors'} +{'data_set_name': '可以使用:pv13_h2_min2_1k_sector', 'description': '不可使用,仅供参考:Grouping fields for top 1000'} +{'data_set_name': '可以使用:pv13_h_min22_1000_sector', 'description': '不可使用,仅供参考:Grouping fields for top 1000'} +{'data_set_name': '可以使用:pv13_h_min24_500_sector', 'description': '不可使用,仅供参考:Grouping fields for top 500'} +{'data_set_name': '可以使用:pv13_h_min2_focused_sector', 'description': '不可使用,仅供参考:Grouping fields for top 200'} +{'data_set_name': '可以使用:pv13_h_min52_1k_sector', 'description': '不可使用,仅供参考:Grouping fields for top 1000'} +{'data_set_name': '可以使用:news_max_up_amt', 'description': '不可使用,仅供参考:The after the news high minus the price at the time of the news'} +{'data_set_name': '可以使用:nws18_sse', 'description': '不可使用,仅供参考:Sentiment of phrases impacting the company'} +{'data_set_name': '可以使用:rp_nip_ratings', 'description': '不可使用,仅供参考:News impact projection of analyst ratings-related news'} +{'data_set_name': '可以使用:fn_comp_not_rec_stock_options_a', 'description': '不可使用,仅供参考:Unrecognized cost of unvested stock option awards.'} +{'data_set_name': '可以使用:fn_comp_not_rec_stock_options_q', 'description': '不可使用,仅供参考:Unrecognized cost of unvested stock option awards.'} +{'data_set_name': '可以使用:fn_def_tax_liab_a', 'description': '不可使用,仅供参考:Amount, after deferred tax asset, of deferred tax liability attributable to taxable differences without jurisdictional netting.'} +{'data_set_name': '可以使用:fn_op_lease_min_pay_due_in_2y_a', 'description': '不可使用,仅供参考:Amount of required minimum rental payments for operating leases having an initial or remaining non-cancelable lease term in excess of 1 year due in the 2nd fiscal year following the latest fiscal year. Excludes interim and annual periods when interim periods are reported on a rolling approach, from latest balance sheet date.'} +========================= 数据字段结束 ======================================= + +以上数据字段和操作符, 按照Description说明组合, 但是每一个 alpha 组合的使用的数据字段和操作符不要过于集中, 在符合语法的情况下, 多尝试不同的组合 \ No newline at end of file diff --git a/new_story_prompt/end_prompt.txt b/new_story_prompt/end_prompt.txt new file mode 100644 index 0000000..b402ce3 --- /dev/null +++ b/new_story_prompt/end_prompt.txt @@ -0,0 +1,17 @@ +帮我写一份类似这样的金融逻辑的描述, +如果你不清楚我有什么数据集字段, 可以不用说, 只需要逻辑描述清晰就行 +输出的格式和我上面给你的例子一样, +但是要创新一个金融逻辑研究方向 + +先生成一份中文的, 格式如下: + +输出格式: +**名称** +... +**假设** +... +**实施方案** +... +**阿尔法因子优化建议** + +然后再将生成出来的内容, 翻译一份英文,格式和中文一样 \ No newline at end of file diff --git a/new_story_prompt/financial_logic_0.txt b/new_story_prompt/financial_logic_0.txt new file mode 100644 index 0000000..2b18adb --- /dev/null +++ b/new_story_prompt/financial_logic_0.txt @@ -0,0 +1,70 @@ +负债增值 +[[假设]] +负债公允价值上升可能意味着公司承担了高于预期的成本。这种情况可能恶化公司的财务健康状况,进而导致盈利能力下降或引发财务困境。 +[[实施方案]] +基于基本面数据,当负债公允价值在一年内出现上升时建立空头仓位,反之则建立多头仓位。 +[[实施优化建议]] +能否通过缩短观测周期(例如季度数据)来提升策略准确性? + +递延收入 +[[假设]] +递延收入较高的公司在未来确认收入时,往往会给市场带来超预期表现。 +[[实施方案]] +fnd6_drc字段代表递延收入。为提高数据字段覆盖度,需使用时序回填算子。将递延收入除以总资产以消除企业规模影响。 +[[实施优化建议]] +建议采用横截面算子代替原始比率值来确定股票权重。可运用分组算子对同类股票进行横向比较。 + +降低负债水平 +[[假设]] +对负债相较过往有所减少的公司建立多头仓位,反之对负债增加的公司建立空头仓位。 +[[实施方案]] +采用基础数据“负债”验证该假设,使用时序分位数算子分析该字段过去六个月的变化趋势。 +[[阿尔法因子优化建议]] +利用算子的驱动参数对负债数据进行分布形态转换。 + +财务杠杆效应 +[[假设]] +高负债资产比率的企业——若财务状况稳健、现金流充裕——常将债务作为战略工具推动扩张性增长。通过有效运用财务杠杆,这类公司将借贷资金投入高潜力项目,从而更可能获得超额收益。 +[[实施方案]] +采用"负债"与"资产"数据构建比率指标。 +[[阿尔法因子优化建议]] +该比率在不同行业间差异显著,是否值得采用替代性行业中性化处理方案? + +社交媒体效应 +[[假设]] +表现不佳的股票在社交媒体平台上通常会被更频繁地讨论,因此可能产生更高的相对情绪讨论量,建议考虑对这类股票建立空头仓位。 +[[实施方案]] +若监测到情绪讨论量增加,则通过社交媒体数据字段施加负权重配置。 + +估值偏离波动空头策略 +[[假设]] +价值因子与动量因子在股票中通常不相关,若某只股票同时呈现高动量与高价值评分相关性,则表明其股价与内在价值存在偏离——据此我们对这类股票建立空头仓位。 +[[实施方案]] +使用ts_corr()函数测算过去三年间估值评分与动量评分的相关性,通过ts_backfill()算子对前期缺失数据进行回填。 +[[阿尔法因子优化建议]] +建议运用分组算子与模型数据,在同类股票组内进行横向比较分析。 + +网络依存度 +[[假设]] +数据字段中较高的枢纽评分意味着企业客户拥有广泛业务连接,而较低评分则表明合作伙伴集中度较高。若企业的客户枢纽评分偏低,说明其客户合作伙伴较少,可能更依赖该企业。这对企业股票具有积极意义,意味着被替代风险较低,因此长期持有此类股票或是明智选择。 +[[实施方案]] +基于价量数据,对过去两年客户枢纽评分持续较低的企业股票建立多头仓位。 +[[阿尔法因子优化建议]] +在现有表达式基础上叠加横截面算子是否有助于提升策略表现? + +新闻驱动型波动率 +[[假设]] +新闻发布后股价波动剧烈的公司股票,往往受到市场情绪分化影响,可能引发剧烈波动行情。建议在近期新闻发布导致的极端波动阶段回避交易。 +[[实施方案]] +使用'news_session_range'新闻数据字段,通过'ts_backfill'算子提升数据覆盖度。结合'ts_arg_max'算子识别过去一季度内达到最大波动值的交易天数距离当前的时间间隔。该间隔天数越短,股票在阿尔法向量中的配置权重越低。 +[[阿尔法因子优化建议]] +近期新闻事件的影响时效有限,采用对接近零值数据快速调整阿尔法权重的算子(而非均等处理远期数据)能否提升策略表现?同时,使用交易条件限定算子是否有助于降低换手率? + +隐含波动率价差预测因子 +[[假设]] +若看涨期权未平仓量高于看跌期权未平仓量,基于隐含波动率价差强度指标,股票可能出现上涨行情;反之则可能下跌。 +[[实施方案]] +使用'trade_when'算子,以看涨-看跌期权未平仓量比值为条件。当该比值小于1时,基于隐含波动率价差强度指标建立股票多头仓位(采用期权数据)。 +[[阿尔法因子优化建议]] +基于自建分组(如历史波动率分组)对阿尔法因子进行自定义中性化处理,能否提升细分市场的策略表现?可结合分档算子或分层算子与排序算子实现自定义中性化。 + diff --git a/new_story_prompt/financial_logic_1.txt b/new_story_prompt/financial_logic_1.txt new file mode 100644 index 0000000..55c3437 --- /dev/null +++ b/new_story_prompt/financial_logic_1.txt @@ -0,0 +1,77 @@ +研发转化滞后效应 + +[[假设]] +高研发投入的公司若未能及时将研发成果转化为商业产出,可能面临资本效率低下和未来增长动力不足的风险。这类公司通常具有较高的研发费用资本化率,但专利产出或新产品收入占比偏低,市场可能在一段时间后重新评估其研发效率,导致股价回调。 + +[[实施方案]] +基于研发费用资本化金额与专利授权数量(或新产品销售收入)构建“研发转化效率比”。使用时序滞后算子将专利数据滞后6-12个月以匹配研发投入周期,再通过ts_mean计算过去三年的平均转化效率。对效率持续偏低(后30%)的公司建立空头仓位,对效率显著提升(前30%)的公司建立多头仓位。 + +[[阿尔法因子优化建议]] +不同行业的研发周期和转化模式差异巨大(如医药vs软件)。是否可采用行业动态分档,在各自行业队列内计算转化效率的分位数排名,以消除行业特性带来的偏差? + +供应链韧性溢价 + +--- + +[[假设]] +拥有多元化、抗冲击供应链的公司在面临全球性或区域性供应链中断时,表现出更强的营收稳定性和更快的恢复能力。这种韧性在危机期间被市场低估,但在多次冲击后会被逐步定价,形成长期超额收益。 + +[[实施方案]] +整合供应商集中度、关键物料替代源数量、物流枢纽分布广度等数据字段,构建“供应链韧性评分”。使用时序波动率算子计算该评分在过往供应链危机事件期(如疫情、地缘冲突)内的稳定性,并对稳定性高的公司赋予正向权重。采用ts_zscore对评分进行标准化,结合横截面排序动态调整仓位。 + +[[实施优化建议]] +建议引入事件驱动算子,仅在监测到供应链压力指数(如全球物流延误指数)突破阈值时触发该因子,以提升策略的敏锐度和稀疏性,降低非危机时期的无效换手。 + +--- + +碳排放强度收敛交易 + +[[假设]] +在强监管或碳税预期升温的背景下,碳排放强度显著高于行业平均的公司将面临更大的合规成本或声誉风险,其估值可能受压;而低于平均的公司则可能获得政策红利或绿色溢价。两者间的差距会随着政策推进而逐步收敛。 + +[[实施方案]] +使用公司碳排放总量与营收的比率,计算其与行业平均值的偏离度(横截面z值)。通过ts_decay_linear算子对偏离度进行时间加权,赋予近期偏差更高权重。对偏离度持续扩大且处于高位的公司建立空头,对偏离度收窄或持续低位的公司建立多头。 + +[[阿尔法因子优化建议]] +能否结合舆情数据,对“碳税立法进展”“ESG基金流入”等主题新闻进行情感分析,构建动态加权系数?当政策舆情升温时,放大该因子的权重分配,以捕捉事件催化下的收敛加速行情。 + +--- + +管理层薪酬激励错配因子 + +[[假设]] +管理层薪酬结构中若短期激励占比过高,可能导致决策短视,损害长期价值;而长期股权激励与公司长期业绩(如3年ROIC、客户留存率)挂钩较好的公司,更可能实现可持续增长。市场可能逐步识别并奖励这种治理优势。 + +[[实施方案]] +提取管理层薪酬明细字段,计算“长期激励占比”(股权激励价值/总薪酬)与“长期业绩挂钩强度”(薪酬条款中与3年以上业绩指标挂钩的比例)。使用ts_corr计算两者在过去五年的滚动相关性。对相关性高且持续提升的公司赋予正向阿尔法权重。 + +[[实施优化建议]] +建议引入股东治理数据(如机构股东持股比例、投票权集中度),作为调节变量。在治理监督较强的公司群体中,该因子的预测力可能更显著,可采用条件算子进行分层处理。 + +--- + +客户生命周期价值动量 + +[[假设]] +订阅制或高复购率行业(如SaaS、消费会员)中,客户生命周期价值(LTV)的加速增长或衰减,领先于营收变化。LTV增长动能强的公司,其未来现金流稳定性更高,应享有估值溢价;动能衰减则预示基本面临顶。 + +[[实施方案]] +基于客户新增数量、流失率、客单价等字段,通过ts_growth算子计算LTV的季度环比增长率。使用时序动量算子(如ts_rank对过去4个季度的增长率进行排序),对动量处于持续上升通道的公司建立多头仓位。采用行业中性化处理,仅在细分赛道(如企业级SaaS)内进行横截面比较。 + +[[阿尔法因子优化建议]] +为降低噪声,可结合财报电话会文本分析,提取管理层对“客户健康度”“留存趋势”的定性评论,构建情绪调整因子。当量化LTV动量与文本情绪一致时,增强信号权重;当背离时,降低权重或屏蔽信号。 + +--- + +ESG争议事件修复效应 +[[假设]] + +ESG争议事件爆发后,市场往往存在短期过度反应,导致股价偏离内在价值。若公司在争议后及时采取有效整改措施(如完善合规体系、发布整改报告、引入第三方监督),其ESG表现将逐步修复,市场情绪也会随之回暖,股价大概率回归合理区间,此类公司可建立多头仓位;反之,对争议后无整改动作、ESG表现持续恶化的公司,应建立空头仓位以规避风险。 + +[[实施方案]] + +筛选过去12个月内发生ESG争议事件的标的,跟踪事件爆发后3个月、6个月、12个月的整改进展及ESG表现变化趋势。通过时序分析工具量化整改措施的落地成效,结合股价波动数据,构建“争议严重程度-整改效率-股价修复幅度”的关联指标,对整改成效显著且股价尚未充分修复的标的配置正向权重。 + +[[阿尔法因子优化建议]] + +建议按ESG争议类型(环境违规、社会责任缺失、公司治理缺陷)进行分组,不同类型争议的修复周期与市场敏感度差异较大,分组后可提升因子针对性。同时,引入行业ESG基准值做中性化处理,消除行业属性对ESG表现及整改难度的影响;可叠加流动性因子过滤,避免因股价修复过程中流动性不足导致的交易成本上升。 \ No newline at end of file diff --git a/new_story_prompt/role_system.txt b/new_story_prompt/role_system.txt new file mode 100644 index 0000000..c8c9893 --- /dev/null +++ b/new_story_prompt/role_system.txt @@ -0,0 +1 @@ +你是研究alpha量化因子的专业顾问 \ No newline at end of file diff --git a/new_story_prompt/temp.txt b/new_story_prompt/temp.txt new file mode 100644 index 0000000..68a8312 --- /dev/null +++ b/new_story_prompt/temp.txt @@ -0,0 +1,165 @@ +负债增值 +[[假设]] +负债公允价值上升可能意味着公司承担了高于预期的成本。这种情况可能恶化公司的财务健康状况,进而导致盈利能力下降或引发财务困境。 +[[实施方案]] +基于基本面数据,当负债公允价值在一年内出现上升时建立空头仓位,反之则建立多头仓位。 +[[实施优化建议]] +能否通过缩短观测周期(例如季度数据)来提升策略准确性? + +递延收入 +[[假设]] +递延收入较高的公司在未来确认收入时,往往会给市场带来超预期表现。 +[[实施方案]] +fnd6_drc字段代表递延收入。为提高数据字段覆盖度,需使用时序回填算子。将递延收入除以总资产以消除企业规模影响。 +[[实施优化建议]] +建议采用横截面算子代替原始比率值来确定股票权重。可运用分组算子对同类股票进行横向比较。 + +降低负债水平 +[[假设]] +对负债相较过往有所减少的公司建立多头仓位,反之对负债增加的公司建立空头仓位。 +[[实施方案]] +采用基础数据“负债”验证该假设,使用时序分位数算子分析该字段过去六个月的变化趋势。 +[[阿尔法因子优化建议]] +利用算子的驱动参数对负债数据进行分布形态转换。 + +财务杠杆效应 +[[假设]] +高负债资产比率的企业——若财务状况稳健、现金流充裕——常将债务作为战略工具推动扩张性增长。通过有效运用财务杠杆,这类公司将借贷资金投入高潜力项目,从而更可能获得超额收益。 +[[实施方案]] +采用"负债"与"资产"数据构建比率指标。 +[[阿尔法因子优化建议]] +该比率在不同行业间差异显著,是否值得采用替代性行业中性化处理方案? + +社交媒体效应 +[[假设]] +表现不佳的股票在社交媒体平台上通常会被更频繁地讨论,因此可能产生更高的相对情绪讨论量,建议考虑对这类股票建立空头仓位。 +[[实施方案]] +若监测到情绪讨论量增加,则通过社交媒体数据字段施加负权重配置。 + +估值偏离波动空头策略 +[[假设]] +价值因子与动量因子在股票中通常不相关,若某只股票同时呈现高动量与高价值评分相关性,则表明其股价与内在价值存在偏离——据此我们对这类股票建立空头仓位。 +[[实施方案]] +使用ts_corr()函数测算过去三年间估值评分与动量评分的相关性,通过ts_backfill()算子对前期缺失数据进行回填。 +[[阿尔法因子优化建议]] +建议运用分组算子与模型数据,在同类股票组内进行横向比较分析。 + +网络依存度 +[[假设]] +数据字段中较高的枢纽评分意味着企业客户拥有广泛业务连接,而较低评分则表明合作伙伴集中度较高。若企业的客户枢纽评分偏低,说明其客户合作伙伴较少,可能更依赖该企业。这对企业股票具有积极意义,意味着被替代风险较低,因此长期持有此类股票或是明智选择。 +[[实施方案]] +基于价量数据,对过去两年客户枢纽评分持续较低的企业股票建立多头仓位。 +[[阿尔法因子优化建议]] +在现有表达式基础上叠加横截面算子是否有助于提升策略表现? + +新闻驱动型波动率 +[[假设]] +新闻发布后股价波动剧烈的公司股票,往往受到市场情绪分化影响,可能引发剧烈波动行情。建议在近期新闻发布导致的极端波动阶段回避交易。 +[[实施方案]] +使用'news_session_range'新闻数据字段,通过'ts_backfill'算子提升数据覆盖度。结合'ts_arg_max'算子识别过去一季度内达到最大波动值的交易天数距离当前的时间间隔。该间隔天数越短,股票在阿尔法向量中的配置权重越低。 +[[阿尔法因子优化建议]] +近期新闻事件的影响时效有限,采用对接近零值数据快速调整阿尔法权重的算子(而非均等处理远期数据)能否提升策略表现?同时,使用交易条件限定算子是否有助于降低换手率? + +隐含波动率价差预测因子 +[[假设]] +若看涨期权未平仓量高于看跌期权未平仓量,基于隐含波动率价差强度指标,股票可能出现上涨行情;反之则可能下跌。 +[[实施方案]] +使用'trade_when'算子,以看涨-看跌期权未平仓量比值为条件。当该比值小于1时,基于隐含波动率价差强度指标建立股票多头仓位(采用期权数据)。 +[[阿尔法因子优化建议]] +基于自建分组(如历史波动率分组)对阿尔法因子进行自定义中性化处理,能否提升细分市场的策略表现?可结合分档算子或分层算子与排序算子实现自定义中性化。 + +研发转化滞后效应 + +[[假设]] +高研发投入的公司若未能及时将研发成果转化为商业产出,可能面临资本效率低下和未来增长动力不足的风险。这类公司通常具有较高的研发费用资本化率,但专利产出或新产品收入占比偏低,市场可能在一段时间后重新评估其研发效率,导致股价回调。 + +[[实施方案]] +基于研发费用资本化金额与专利授权数量(或新产品销售收入)构建“研发转化效率比”。使用时序滞后算子将专利数据滞后6-12个月以匹配研发投入周期,再通过ts_mean计算过去三年的平均转化效率。对效率持续偏低(后30%)的公司建立空头仓位,对效率显著提升(前30%)的公司建立多头仓位。 + +[[阿尔法因子优化建议]] +不同行业的研发周期和转化模式差异巨大(如医药vs软件)。是否可采用行业动态分档,在各自行业队列内计算转化效率的分位数排名,以消除行业特性带来的偏差? + +供应链韧性溢价 + +--- + +[[假设]] +拥有多元化、抗冲击供应链的公司在面临全球性或区域性供应链中断时,表现出更强的营收稳定性和更快的恢复能力。这种韧性在危机期间被市场低估,但在多次冲击后会被逐步定价,形成长期超额收益。 + +[[实施方案]] +整合供应商集中度、关键物料替代源数量、物流枢纽分布广度等数据字段,构建“供应链韧性评分”。使用时序波动率算子计算该评分在过往供应链危机事件期(如疫情、地缘冲突)内的稳定性,并对稳定性高的公司赋予正向权重。采用ts_zscore对评分进行标准化,结合横截面排序动态调整仓位。 + +[[实施优化建议]] +建议引入事件驱动算子,仅在监测到供应链压力指数(如全球物流延误指数)突破阈值时触发该因子,以提升策略的敏锐度和稀疏性,降低非危机时期的无效换手。 + +--- + +碳排放强度收敛交易 + +[[假设]] +在强监管或碳税预期升温的背景下,碳排放强度显著高于行业平均的公司将面临更大的合规成本或声誉风险,其估值可能受压;而低于平均的公司则可能获得政策红利或绿色溢价。两者间的差距会随着政策推进而逐步收敛。 + +[[实施方案]] +使用公司碳排放总量与营收的比率,计算其与行业平均值的偏离度(横截面z值)。通过ts_decay_linear算子对偏离度进行时间加权,赋予近期偏差更高权重。对偏离度持续扩大且处于高位的公司建立空头,对偏离度收窄或持续低位的公司建立多头。 + +[[阿尔法因子优化建议]] +能否结合舆情数据,对“碳税立法进展”“ESG基金流入”等主题新闻进行情感分析,构建动态加权系数?当政策舆情升温时,放大该因子的权重分配,以捕捉事件催化下的收敛加速行情。 + +--- + +管理层薪酬激励错配因子 + +[[假设]] +管理层薪酬结构中若短期激励占比过高,可能导致决策短视,损害长期价值;而长期股权激励与公司长期业绩(如3年ROIC、客户留存率)挂钩较好的公司,更可能实现可持续增长。市场可能逐步识别并奖励这种治理优势。 + +[[实施方案]] +提取管理层薪酬明细字段,计算“长期激励占比”(股权激励价值/总薪酬)与“长期业绩挂钩强度”(薪酬条款中与3年以上业绩指标挂钩的比例)。使用ts_corr计算两者在过去五年的滚动相关性。对相关性高且持续提升的公司赋予正向阿尔法权重。 + +[[实施优化建议]] +建议引入股东治理数据(如机构股东持股比例、投票权集中度),作为调节变量。在治理监督较强的公司群体中,该因子的预测力可能更显著,可采用条件算子进行分层处理。 + +--- + +客户生命周期价值动量 + +[[假设]] +订阅制或高复购率行业(如SaaS、消费会员)中,客户生命周期价值(LTV)的加速增长或衰减,领先于营收变化。LTV增长动能强的公司,其未来现金流稳定性更高,应享有估值溢价;动能衰减则预示基本面临顶。 + +[[实施方案]] +基于客户新增数量、流失率、客单价等字段,通过ts_growth算子计算LTV的季度环比增长率。使用时序动量算子(如ts_rank对过去4个季度的增长率进行排序),对动量处于持续上升通道的公司建立多头仓位。采用行业中性化处理,仅在细分赛道(如企业级SaaS)内进行横截面比较。 + +[[阿尔法因子优化建议]] +为降低噪声,可结合财报电话会文本分析,提取管理层对“客户健康度”“留存趋势”的定性评论,构建情绪调整因子。当量化LTV动量与文本情绪一致时,增强信号权重;当背离时,降低权重或屏蔽信号。 + +--- + +ESG争议事件修复效应 +[[假设]] + +ESG争议事件爆发后,市场往往存在短期过度反应,导致股价偏离内在价值。若公司在争议后及时采取有效整改措施(如完善合规体系、发布整改报告、引入第三方监督),其ESG表现将逐步修复,市场情绪也会随之回暖,股价大概率回归合理区间,此类公司可建立多头仓位;反之,对争议后无整改动作、ESG表现持续恶化的公司,应建立空头仓位以规避风险。 + +[[实施方案]] + +筛选过去12个月内发生ESG争议事件的标的,跟踪事件爆发后3个月、6个月、12个月的整改进展及ESG表现变化趋势。通过时序分析工具量化整改措施的落地成效,结合股价波动数据,构建“争议严重程度-整改效率-股价修复幅度”的关联指标,对整改成效显著且股价尚未充分修复的标的配置正向权重。 + +[[阿尔法因子优化建议]] + +建议按ESG争议类型(环境违规、社会责任缺失、公司治理缺陷)进行分组,不同类型争议的修复周期与市场敏感度差异较大,分组后可提升因子针对性。同时,引入行业ESG基准值做中性化处理,消除行业属性对ESG表现及整改难度的影响;可叠加流动性因子过滤,避免因股价修复过程中流动性不足导致的交易成本上升。 + +帮我写一份类似这样的金融逻辑的描述, +如果你不清楚我有什么数据集字段, 可以不用说, 只需要逻辑描述清晰就行 +输出的格式和我上面给你的例子一样, +但是要创新一个金融逻辑研究方向 + +先生成一份中文的, 格式如下: + +输出格式: +**名称** +... +**假设** +... +**实施方案** +... +**阿尔法因子优化建议** + +然后再将生成出来的内容, 翻译一份英文,格式和中文一样 \ No newline at end of file diff --git a/prepare_prompt/alpha_prompt.txt b/prepare_prompt/alpha_prompt.txt index 01dfffe..824d7a3 100644 --- a/prepare_prompt/alpha_prompt.txt +++ b/prepare_prompt/alpha_prompt.txt @@ -1,17 +1,16 @@ 任务指令 -Receivables Quality Premium Factor +**Name** +Institutional Herding Reversal Effect -Hypothesis +**Hypothesis** +When a large number of institutional investors concentrate on buying a particular stock within a short period, it can create a "herding effect," potentially driving the stock price away from its fundamental value. However, such concentrated positioning is often accompanied by diminishing informational advantages and increasing liquidity needs. Once market sentiment reverses or a negative catalyst emerges, institutions might be forced to sell simultaneously, leading to sharp price reversals. Therefore, establishing short positions in stocks with a significant recent surge in institutional concentration and long positions in stocks where institutional ownership has stabilized after a period of disorderly selling may capture the alpha generated by this behavioral finance phenomenon. -Receivables quality (rather than mere scale) is a core reflection of an enterprise's operational resilience and bargaining power. High-quality receivables—characterized by short collection cycles, low bad debt rates, and a reasonable proportion of receivables from major customers—indicate strong certainty in cash flow collection, low operational risks, and significant bargaining power over downstream customers. Such companies are more likely to achieve stable profit growth and obtain long-term valuation premiums, warranting long positions. Conversely, companies with poor receivables quality face potential risks of cash flow pressure and increased impairment losses, resulting in weak performance certainty, and short positions should be established. +**Implementation Plan** +Utilize data on changes in institutional ownership holdings. Calculate the quarterly change rate of institutional ownership and its cross-sectional percentile rank. Employ the `ts_rank` operator to identify stocks with abnormally high growth in institutional ownership (e.g., top 10%). Simultaneously, use the `ts_decay_linear` operator to apply time decay to selling pressure, identifying stocks where ownership has stabilized after a period of selling. Assign negative weights to the former and positive weights to the latter. -Implementation Plan +**Alpha Factor Optimization Suggestions** +The impact of institutional behavior varies across market cap styles (e.g., persistence might be stronger in large-caps, while reversal effects could be more violent in small-caps). Would it be beneficial to group stocks by market capitalization and calculate the abnormality of institutional behavior within each group to enhance the factor's robustness? Furthermore, incorporating overall market liquidity conditions (e.g., using the `trade_when` operator) to overweight this factor specifically during periods of tightening liquidity might better capture reversal opportunities arising from forced institutional selling. -Construct a "composite receivables quality indicator" integrating three core dimensions: receivables turnover days, allowance for bad debts ratio, and the proportion of receivables from the top five customers. Standardize data of each dimension through time-series standardization processing, and generate a comprehensive quality score using the weighted scoring method (weights are set based on the sensitivity of each dimension to cash flow). Utilize time-series trend operators to analyze the variation trajectory of quality scores over the past four quarters, assign positive weights to companies with scores consistently at a high level and steadily improving, and negative weights to those with scores persistently low or rapidly declining. Meanwhile, eliminate the interference of industry scale differences on the indicator through standardization processing. - -Alpha Factor Optimization Suggestions - -Introduce customer credit rating data as a moderating variable; appropriately increase the weight of receivables quality scores for companies whose downstream customers are mostly high-credit entities to enhance factor effectiveness. 2. Dynamically adjust the weights of each dimension according to industry characteristics (e.g., focusing on turnover days in the retail industry and bad debt rates in the manufacturing industry) to replace the unified weighting model and improve industry adaptability. 3. Incorporate cash flow verification operators; strengthen signal weights when there is positive resonance between receivables quality scores and operating cash flow net growth rate, and weaken signals when there is a divergence, so as to reduce misjudgment risks of a single indicator. *=========================================================================================* @@ -22,6 +21,7 @@ Introduce customer credit rating data as a moderating variable; appropriately in ===================== !!! 重点(输出方式) !!! ===================== 现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。 +不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合 **输出格式**(一行一个表达式, 每个表达式中间需要添加一个空行, 只要表达式本身, 不需要赋值, 不要解释, 不需要序号, 也不要输出多余的东西): 表达式 @@ -37,4 +37,33 @@ Introduce customer credit rating data as a moderating variable; appropriately in 重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。 以下是我的账号有权限使用的操作符, 请严格按照操作符, 以及我提供的数据集, 进行生成,组合 20 个alpha: -必须遵守操作符的使用方法 \ No newline at end of file +不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合 + + +================================================================= +以下是错误的组合, 请勿类似的操作: +Operator ts_product does not support event inputs +Operator ts_zscore does not support event inputs +Operator ts_mean does not support event inputs +Operator ts_scale does not support event inputs +Operator add does not support event inputs +Operator sign does not support event inputs +Operator subtract does not support event inputs +Operator ts_delta does not support event inputs +Operator ts_rank does not support event inputs +Operator greater does not support event inputs +Operator ts_av_diff does not support event inputs +Operator ts_quantile does not support event inputs +Operator ts_count_nans does not support event inputs +Operator ts_covariance does not support event inputs +Operator ts_arg_min does not support event inputs +Operator divide does not support event inputs +Operator ts_corr does not support event inputs +Operator multiply does not support event inputs +Operator if_else does not support event inputs +Operator ts_sum does not support event inputs +Operator ts_delay does not support event inputs +Operator group_zscore does not support event inputs +Operator ts_arg_max does not support event inputs +Operator ts_std_dev does not support event inputs +Operator ts_backfill does not support event inputs \ No newline at end of file diff --git a/prepare_prompt/keys_text.txt b/prepare_prompt/keys_text.txt index 1629b4c..df2521e 100644 --- a/prepare_prompt/keys_text.txt +++ b/prepare_prompt/keys_text.txt @@ -1,13 +1,11 @@ -Receivables Quality Premium Factor +**Name** +Institutional Herding Reversal Effect -Hypothesis +**Hypothesis** +When a large number of institutional investors concentrate on buying a particular stock within a short period, it can create a "herding effect," potentially driving the stock price away from its fundamental value. However, such concentrated positioning is often accompanied by diminishing informational advantages and increasing liquidity needs. Once market sentiment reverses or a negative catalyst emerges, institutions might be forced to sell simultaneously, leading to sharp price reversals. Therefore, establishing short positions in stocks with a significant recent surge in institutional concentration and long positions in stocks where institutional ownership has stabilized after a period of disorderly selling may capture the alpha generated by this behavioral finance phenomenon. -Receivables quality (rather than mere scale) is a core reflection of an enterprise's operational resilience and bargaining power. High-quality receivables—characterized by short collection cycles, low bad debt rates, and a reasonable proportion of receivables from major customers—indicate strong certainty in cash flow collection, low operational risks, and significant bargaining power over downstream customers. Such companies are more likely to achieve stable profit growth and obtain long-term valuation premiums, warranting long positions. Conversely, companies with poor receivables quality face potential risks of cash flow pressure and increased impairment losses, resulting in weak performance certainty, and short positions should be established. +**Implementation Plan** +Utilize data on changes in institutional ownership holdings. Calculate the quarterly change rate of institutional ownership and its cross-sectional percentile rank. Employ the `ts_rank` operator to identify stocks with abnormally high growth in institutional ownership (e.g., top 10%). Simultaneously, use the `ts_decay_linear` operator to apply time decay to selling pressure, identifying stocks where ownership has stabilized after a period of selling. Assign negative weights to the former and positive weights to the latter. -Implementation Plan - -Construct a "composite receivables quality indicator" integrating three core dimensions: receivables turnover days, allowance for bad debts ratio, and the proportion of receivables from the top five customers. Standardize data of each dimension through time-series standardization processing, and generate a comprehensive quality score using the weighted scoring method (weights are set based on the sensitivity of each dimension to cash flow). Utilize time-series trend operators to analyze the variation trajectory of quality scores over the past four quarters, assign positive weights to companies with scores consistently at a high level and steadily improving, and negative weights to those with scores persistently low or rapidly declining. Meanwhile, eliminate the interference of industry scale differences on the indicator through standardization processing. - -Alpha Factor Optimization Suggestions - -1. Introduce customer credit rating data as a moderating variable; appropriately increase the weight of receivables quality scores for companies whose downstream customers are mostly high-credit entities to enhance factor effectiveness. 2. Dynamically adjust the weights of each dimension according to industry characteristics (e.g., focusing on turnover days in the retail industry and bad debt rates in the manufacturing industry) to replace the unified weighting model and improve industry adaptability. 3. Incorporate cash flow verification operators; strengthen signal weights when there is positive resonance between receivables quality scores and operating cash flow net growth rate, and weaken signals when there is a divergence, so as to reduce misjudgment risks of a single indicator. +**Alpha Factor Optimization Suggestions** +The impact of institutional behavior varies across market cap styles (e.g., persistence might be stronger in large-caps, while reversal effects could be more violent in small-caps). Would it be beneficial to group stocks by market capitalization and calculate the abnormality of institutional behavior within each group to enhance the factor's robustness? Furthermore, incorporating overall market liquidity conditions (e.g., using the `trade_when` operator) to overweight this factor specifically during periods of tightening liquidity might better capture reversal opportunities arising from forced institutional selling.