From 953772d5e087d101181eeccb05d774338468fff3 Mon Sep 17 00:00:00 2001 From: Jack Date: Mon, 19 Jan 2026 22:44:36 +0800 Subject: [PATCH] ++ --- combination_alpha.py | 6 +- expression_validator.py | 998 ++++++++++++++++++ .../deepseek-ai_DeepSeek-V3.2-Exp_141836.txt | 77 -- parsetab.py | 60 ++ 4 files changed, 1061 insertions(+), 80 deletions(-) create mode 100644 expression_validator.py delete mode 100644 generated_alpha/2026/01/19/deepseek-ai_DeepSeek-V3.2-Exp_141836.txt create mode 100644 parsetab.py diff --git a/combination_alpha.py b/combination_alpha.py index 20e4cd2..739c2f3 100644 --- a/combination_alpha.py +++ b/combination_alpha.py @@ -18,11 +18,11 @@ origin_alpha = 'add({call_price}, {put_price}) - abs(ts_delta({close}, 1))' def combina_alpha(): pass -def save_alpha() - +def save_alpha(): + pass def main(): - + pass if __name__ == "__main__": diff --git a/expression_validator.py b/expression_validator.py new file mode 100644 index 0000000..5916d63 --- /dev/null +++ b/expression_validator.py @@ -0,0 +1,998 @@ +# !/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +表达式验证器 - 使用抽象语法树验证字符串表达式格式是否正确 + +本模块实现了一个能够检测字符串表达式格式是否正确的系统,基于PLY(Python Lex-Yacc) +构建词法分析器和语法分析器,识别表达式中的操作符、函数和字段,并验证其格式正确性。 +""" + +import re +import sys +import json +import os +from typing import List, Dict, Any, Optional, Tuple + +# 尝试导入PLY库,如果不存在则提供安装提示 +try: + import ply.lex as lex + import ply.yacc as yacc +except ImportError: + print("错误: 需要安装PLY库。请运行 'pip install ply' 来安装。") + sys.exit(1) + +# 1. 定义支持的操作符和函数 +supported_functions = { + # Group 类别函数 + 'group_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_mean': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, + 'group_median': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_rank': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_vector_proj': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'category']}, + 'group_normalize': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'category', 'expression', 'expression', 'expression']}, + 'group_extra': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'category']}, + 'group_backfill': {'min_args': 3, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'expression'], 'param_names': ['x', 'cat', 'days', 'std']}, + 'group_scale': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_count': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_zscore': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_std_dev': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_sum': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_neutralize': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, + 'group_multi_regression': {'min_args': 4, 'max_args': 9, 'arg_types': ['expression'] * 9}, + 'group_cartesian_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['category', 'category']}, + 'combo_a': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, + + # Transformational 类别函数 + 'right_tail': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'bucket': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 第二个参数可以是string类型的range参数 + 'tail': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'expression']}, + 'left_tail': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'trade_when': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, + 'generate_stats': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + + # Cross Sectional 类别函数 + 'winsorize': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression'], 'param_names': ['x', 'std']}, + 'rank': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'regression_proj': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'vector_neut': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'regression_neut': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'multi_regression': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # 支持多个自变量 + + # Time Series 类别函数 + 'ts_std_dev': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_mean': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_delay': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_corr': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, + 'ts_zscore': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_returns': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'mode']}, + 'ts_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_backfill': {'min_args': 2, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'string']}, + 'days_from_last_change': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'last_diff_value': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_scale': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, + 'ts_entropy': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number'], 'param_names': ['x', 'd', 'buckets']}, + 'ts_step': {'min_args': 1, 'max_args': 1, 'arg_types': ['number']}, + 'ts_sum': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_co_kurtosis': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, + 'inst_tvr': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_decay_exp_window': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'factor']}, + 'ts_av_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_kurtosis': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_min_max_diff': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, + 'ts_arg_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_min_max_cps': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, + 'ts_rank': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, + 'ts_ir': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_theilsen': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, + 'hump_decay': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_weighted_decay': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_quantile': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'string']}, + 'ts_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_count_nans': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_covariance': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, + 'ts_co_skewness': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, + 'ts_min_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_decay_linear': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'boolean']}, + 'jump_decay': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'number', 'expression', 'number', 'number'], + 'param_names': ['x', 'd', 'stddev', 'sensitivity', 'force']}, + 'ts_moment': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'k']}, + 'ts_arg_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_regression': {'min_args': 3, 'max_args': 5, 'arg_types': ['expression', 'expression', 'number', 'number', 'number'], 'param_names': ['y', 'x', 'd', 'lag', 'rettype']}, + 'ts_skewness': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_max_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'kth_element': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, + 'hump': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'hump']}, + 'ts_median': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_delta': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_poly_regression': {'min_args': 3, 'max_args': 4, 'arg_types': ['expression', 'expression', 'number', 'number']}, + 'ts_target_tvr_decay': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'number'], + 'param_names': ['x', 'lambda_min', 'lambda_max', 'target_tvr']}, + 'ts_target_tvr_delta_limit': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'expression', 'number', 'number', 'number']}, + 'ts_target_tvr_hump': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'number']}, + 'ts_delta_limit': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, + + # Special 类别函数 + 'inst_pnl': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'self_corr': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'in': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字 + 'universe_size': {'min_args': 0, 'max_args': 0, 'arg_types': []}, + + # Missing functions from operators.py + 'quantile': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'driver', 'sigma']}, + # quantile(x, driver = gaussian, sigma = 1.0) + 'normalize': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'boolean', 'number']}, # normalize(x, useStd = false, limit = 0.0) + 'zscore': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # zscore(x) + + # Logical 类别函数 + 'or': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字 + 'and': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字 + 'not': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # 注意:这是关键字 + 'is_nan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'is_not_nan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'less': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'greater': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'is_finite': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'if_else': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, + 'not_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'less_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'greater_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + + # Vector 类别函数 + 'vec_kurtosis': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_min': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_count': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_sum': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_skewness': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_max': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_avg': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_range': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_choose': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'nth']}, + 'vec_powersum': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'constant']}, + 'vec_stddev': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_percentage': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'percentage']}, + 'vec_ir': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'vec_norm': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'ts_percentage': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'percentage']}, + 'signed_power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + 'ts_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, + + # Additional functions from test cases + 'rank_by_side': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'rate', 'scale']}, + 'log_diff': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'nan_mask': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, + 'ts_partial_corr': {'min_args': 4, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'number']}, + 'ts_triple_corr': {'min_args': 4, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'number']}, + 'clamp': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'lower', 'upper']}, + 'keep': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number'], 'param_names': ['x', 'condition', 'period']}, + 'replace': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'target', 'dest']}, + 'filter': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'h', 't']}, + 'one_side': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'string'], 'param_names': ['x', 'side']}, + 'scale_down': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'constant']}, + + # Arithmetic 类别函数 + 'add': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # add(x, y, filter=false) + 'multiply': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 99 + ['boolean'], 'param_names': ['x', 'y', 'filter']}, # multiply(x, y, ..., filter=false) + 'sign': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'subtract': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # subtract(x, y, filter=false) + 'pasteurize': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'log': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'purify': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'arc_tan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'max': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # max(x, y, ...) + 'to_nan': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # to_nan(x, value=0, reverse=false) + 'abs': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'sigmoid': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'divide': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # divide(x, y) + 'min': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # min(x, y, ...) + 'tanh': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'nan_out': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'lower', 'upper']}, # nan_out(x, lower=0, upper=0) + 'signed_power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # signed_power(x, y) + 'inverse': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'round': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'sqrt': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 's_log_1p': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'reverse': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # -x + 'power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # power(x, y) + 'densify': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, + 'floor': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, +} + +# 2. 定义group类型字段 +group_fields = { + 'sector', 'subindustry', 'industry', 'exchange', 'country', 'market' +} + +# 3. 有效类别集合 +valid_categories = group_fields + +# 4. 字段命名模式 - 只校验字段是不是数字字母下划线组成 +field_patterns = [ + re.compile(r'^[a-zA-Z0-9_]+$'), # 只允许数字、字母和下划线组成的字段名 +] + + +# 4. 抽象语法树节点类型 +class ASTNode: + """抽象语法树节点基类""" + + def __init__(self, node_type: str, children: Optional[List['ASTNode']] = None, + value: Optional[Any] = None, line: Optional[int] = None): + self.node_type = node_type # 'function', 'operator', 'field', 'number', 'expression' + self.children = children or [] + self.value = value + self.line = line + + def __str__(self) -> str: + return f"ASTNode({self.node_type}, {self.value}, line={self.line})" + + def __repr__(self) -> str: + return self.__str__() + + +class ExpressionValidator: + """表达式验证器类""" + + def __init__(self): + """初始化词法分析器和语法分析器""" + # 构建词法分析器 + self.lexer = lex.lex(module=self, debug=False) + # 构建语法分析器 + self.parser = yacc.yacc(module=self, debug=False) + # 错误信息存储 + self.errors = [] + + # 词法分析器规则 + tokens = ('FUNCTION', 'FIELD', 'NUMBER', 'LPAREN', 'RPAREN', + 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'COMMA', 'CATEGORY', + 'EQUAL', 'ASSIGN', 'IDENTIFIER', 'STRING', 'GREATER', 'LESS', 'GREATEREQUAL', 'LESSEQUAL', 'NOTEQUAL', 'BOOLEAN') + + # 忽略空白字符 + t_ignore = ' \t\n' + + # 操作符 - 注意顺序很重要,长的操作符要放在前面 + t_PLUS = r'\+' + t_MINUS = r'-' + t_TIMES = r'\*' + t_DIVIDE = r'/' + t_LPAREN = r'\(' + t_RPAREN = r'\)' + t_COMMA = r',' + t_EQUAL = r'==' + t_NOTEQUAL = r'!=' + t_GREATEREQUAL = r'>=' + t_LESSEQUAL = r'<=' + t_GREATER = r'>' + t_LESS = r'<' + t_ASSIGN = r'=' + + # 数字(整数和浮点数) + def t_NUMBER(self, t): + r'\d+\.?\d*' + if '.' in t.value: + t.value = float(t.value) + else: + t.value = int(t.value) + return t + + # 字符串 - 需要放在所有其他标识符规则之前 + def t_STRING(self, t): + r"'[^']*'|\"[^\"]*\"" + # 去除引号 + t.value = t.value[1:-1] + return t + + # 函数和字段名 + def t_IDENTIFIER(self, t): + r'[a-zA-Z_][a-zA-Z0-9_]*' + # 检查是否为布尔值 + if t.value.lower() in {'true', 'false'}: + t.type = 'BOOLEAN' + t.value = t.value.lower() # 转换为小写以保持一致性 + else: + # 查看当前token后面的字符,判断是否为参数名(后面跟着'=') + lexpos = t.lexpos + next_chars = '' + if lexpos + len(t.value) < len(t.lexer.lexdata): + # 查看当前token后面的字符,跳过空格 + next_pos = lexpos + len(t.value) + while next_pos < len(t.lexer.lexdata) and t.lexer.lexdata[next_pos].isspace(): + next_pos += 1 + if next_pos < len(t.lexer.lexdata): + next_chars = t.lexer.lexdata[next_pos:next_pos + 1] + + # 如果后面跟着'=',则为参数名 + if next_chars == '=': + t.type = 'IDENTIFIER' + # 如果后面跟着'(',则为函数名 + elif next_chars == '(': + t.type = 'FUNCTION' + t.value = t.value.lower() # 转换为小写以保持一致性 + # 检查是否为参数名(支持更多参数名) + elif t.value in {'std', 'k', 'lambda_min', 'lambda_max', 'target_tvr', 'range', 'buckets', 'lag', 'rettype', 'mode', 'nth', 'constant', 'percentage', 'driver', 'sigma', + 'rate', 'scale', 'filter', 'lower', 'upper', 'target', 'dest', 'event', 'sensitivity', 'force', 'h', 't', 'period', 'stddev', 'factor', 'k', 'useStd', + 'limit', 'gaussian', 'uniform', 'cauchy'}: + t.type = 'IDENTIFIER' + # 检查是否为函数名(不区分大小写) + elif t.value.lower() in supported_functions: + t.type = 'FUNCTION' + t.value = t.value.lower() # 转换为小写以保持一致性 + # 检查是否为有效类别 + elif t.value in valid_categories: + t.type = 'CATEGORY' + # 检查是否为字段名 + elif self._is_valid_field(t.value): + t.type = 'FIELD' + else: + # 其他标识符,保留为IDENTIFIER类型 + t.type = 'IDENTIFIER' + return t + + # 行号跟踪 + def t_newline(self, t): + r'\n+' + t.lexer.lineno += len(t.value) + + # 错误处理 + def t_error(self, t): + if t: + # 检查是否为非法字符 + if not re.match(r'[a-zA-Z0-9_\+\-\*/\(\)\,\s=<>!]', t.value[0]): + # 这是一个非法字符 + self.errors.append(f"非法字符 '{t.value[0]}' (行 {t.lexer.lineno})") + else: + # 这是一个非法标记 + self.errors.append(f"非法标记 '{t.value}' (行 {t.lexer.lineno})") + # 跳过这个字符,继续处理 + t.lexer.skip(1) + else: + self.errors.append("词法分析器到达文件末尾") + + # 语法分析器规则 + def p_expression(self, p): + """expression : comparison + | expression EQUAL comparison + | expression NOTEQUAL comparison + | expression GREATER comparison + | expression LESS comparison + | expression GREATEREQUAL comparison + | expression LESSEQUAL comparison""" + if len(p) == 2: + p[0] = p[1] + else: + p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]}) + + def p_comparison(self, p): + """comparison : term + | comparison PLUS term + | comparison MINUS term""" + if len(p) == 2: + p[0] = p[1] + else: + p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]}) + + def p_term(self, p): + """term : factor + | term TIMES factor + | term DIVIDE factor""" + if len(p) == 2: + p[0] = p[1] + else: + p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]}) + + def p_factor(self, p): + """factor : NUMBER + | STRING + | FIELD + | CATEGORY + | IDENTIFIER + | BOOLEAN + | MINUS factor + | LPAREN expression RPAREN + | function_call""" + if len(p) == 2: + # 数字、字符串、字段、类别或标识符 + if p.slice[1].type == 'NUMBER': + p[0] = ASTNode('number', value=p[1]) + elif p.slice[1].type == 'STRING': + p[0] = ASTNode('string', value=p[1]) + elif p.slice[1].type == 'FIELD': + p[0] = ASTNode('field', value=p[1]) + elif p.slice[1].type == 'CATEGORY': + p[0] = ASTNode('category', value=p[1]) + elif p.slice[1].type == 'BOOLEAN': + p[0] = ASTNode('boolean', value=p[1]) + elif p.slice[1].type == 'IDENTIFIER': + p[0] = ASTNode('identifier', value=p[1]) + else: + p[0] = p[1] + elif len(p) == 3: + # 一元负号 + p[0] = ASTNode('unop', [p[2]], {'op': p[1]}) + elif len(p) == 4: + # 括号表达式 + p[0] = p[2] + else: + # 函数调用 + p[0] = p[1] + + def p_function_call(self, p): + '''function_call : FUNCTION LPAREN args RPAREN''' + p[0] = ASTNode('function', p[3], p[1]) + + def p_args(self, p): + '''args : arg_list + | empty''' + if len(p) == 2 and p[1] is not None: + p[0] = p[1] + else: + p[0] = [] + + def p_arg_list(self, p): + '''arg_list : arg + | arg_list COMMA arg''' + if len(p) == 2: + p[0] = [p[1]] + else: + p[0] = p[1] + [p[3]] + + def p_arg(self, p): + '''arg : expression + | IDENTIFIER ASSIGN expression''' + if len(p) == 2: + p[0] = {'type': 'positional', 'value': p[1]} + else: + p[0] = {'type': 'named', 'name': p[1], 'value': p[3]} + + def p_empty(self, p): + '''empty :''' + p[0] = None + + # 语法错误处理 + def p_error(self, p): + if p: + self.errors.append(f"语法错误在位置 {p.lexpos}: 非法标记 '{p.value}'") + else: + self.errors.append("语法错误: 表达式不完整") + + def _is_valid_field(self, field_name: str) -> bool: + """检查字段名是否符合模式""" + for pattern in field_patterns: + if pattern.match(field_name): + return True + return False + + def validate_function(self, node: ASTNode, is_in_group_arg: bool = False) -> List[str]: + """验证函数调用的参数数量和类型""" + function_name = node.value + args = node.children + function_info = supported_functions.get(function_name) + + if not function_info: + return [f"未知函数: {function_name}"] + + errors = [] + + # 检查参数数量 + if len(args) < function_info['min_args']: + errors.append(f"函数 {function_name} 需要至少 {function_info['min_args']} 个参数,但只提供了 {len(args)}") + elif len(args) > function_info['max_args']: + errors.append(f"函数 {function_name} 最多接受 {function_info['max_args']} 个参数,但提供了 {len(args)}") + + # 处理参数验证 + # 跟踪已使用的位置参数索引 + positional_index = 0 + + # 对于所有函数,支持命名参数 + for arg in args: + if isinstance(arg, dict): + if arg['type'] == 'named': + # 命名参数 + if 'param_names' in function_info and arg['name'] in function_info['param_names']: + # 查找参数在param_names中的索引 + param_index = function_info['param_names'].index(arg['name']) + if param_index < len(function_info['arg_types']): + expected_type = function_info['arg_types'][param_index] + arg_errors = self._validate_arg_type(arg['value'], expected_type, param_index, function_name, is_in_group_arg) + errors.extend(arg_errors) + # 对于winsorize函数,支持std和clip参数 + elif function_name == 'winsorize' and arg['name'] in ['std', 'clip']: + arg_errors = self._validate_arg_type(arg['value'], 'number', 0, function_name, is_in_group_arg) + errors.extend(arg_errors) + # 对于bucket函数,支持'range'和'buckets'参数 + elif function_name == 'bucket' and arg['name'] in ['range', 'buckets']: + # range和buckets参数应该是string类型 + arg_errors = self._validate_arg_type(arg['value'], 'string', 1, function_name, is_in_group_arg) + errors.extend(arg_errors) + else: + errors.append(f"函数 {function_name} 不存在参数 '{arg['name']}'") + elif arg['type'] == 'positional': + # 位置参数(字典形式) + # 对于winsorize函数,第二个参数必须是命名参数 + if function_name == 'winsorize' and positional_index == 1: + errors.append(f"函数 {function_name} 的第二个参数必须使用命名参数 'std='") + # 对于ts_moment函数,第三个参数必须是命名参数 + elif function_name == 'ts_moment' and positional_index == 2: + errors.append(f"函数 {function_name} 的第三个参数必须使用命名参数 'k='") + else: + # 验证位置参数的类型 + if positional_index < len(function_info['arg_types']): + expected_type = function_info['arg_types'][positional_index] + arg_errors = self._validate_arg_type(arg['value'], expected_type, positional_index, function_name, is_in_group_arg) + errors.extend(arg_errors) + positional_index += 1 + else: + # 其他字典类型参数 + errors.append(f"参数 {positional_index + 1} 格式错误") + positional_index += 1 + else: + # 位置参数(直接ASTNode形式) + # 对于winsorize函数,第二个参数必须是命名参数 + if function_name == 'winsorize' and positional_index == 1: + errors.append(f"函数 {function_name} 的第二个参数必须使用命名参数 'std='") + # 对于ts_moment函数,第三个参数必须是命名参数 + elif function_name == 'ts_moment' and positional_index == 2: + errors.append(f"函数 {function_name} 的第三个参数必须使用命名参数 'k='") + else: + # 验证位置参数的类型 + if positional_index < len(function_info['arg_types']): + expected_type = function_info['arg_types'][positional_index] + arg_errors = self._validate_arg_type(arg, expected_type, positional_index, function_name, is_in_group_arg) + errors.extend(arg_errors) + positional_index += 1 + + return errors + + def _validate_arg_type(self, arg: ASTNode, expected_type: str, arg_index: int, function_name: str, is_in_group_arg: bool = False) -> List[str]: + """验证参数类型是否符合预期""" + errors = [] + + # 首先检查是否是group类型字段,如果是则只能用于Group类型函数 + # 但是如果当前函数是group_xxx或在group函数的参数链中,则允许使用 + if arg.node_type == 'category' and arg.value in group_fields: + if not (function_name.startswith('group_') or is_in_group_arg): + errors.append(f"Group类型字段 '{arg.value}' 只能用于Group类型函数的参数中") + + # 然后验证参数类型是否符合预期 + if expected_type == 'expression': + # 表达式可以是任何有效的AST节点 + pass + elif expected_type == 'number': + if arg.node_type != 'number': + errors.append(f"参数 {arg_index + 1} 应该是一个数字,但得到 {arg.node_type}") + elif expected_type == 'boolean': + # 布尔值可以是数字(0/1) + if arg.node_type != 'number': + errors.append(f"参数 {arg_index + 1} 应该是一个布尔值(0/1),但得到 {arg.node_type}") + elif expected_type == 'field': + if arg.node_type != 'field' and arg.node_type != 'category': + # 允许field或category作为字段参数 + errors.append(f"参数 {arg_index + 1} 应该是一个字段,但得到 {arg.node_type}") + elif arg.node_type == 'field' and not self._is_valid_field(arg.value): + errors.append(f"无效的字段名: {arg.value}") + elif expected_type == 'category': + if not function_name.startswith('group_'): + # 非group函数的category参数必须是category类型且在valid_categories中 + if arg.node_type != 'category': + errors.append(f"参数 {arg_index + 1} 应该是一个类别,但得到 {arg.node_type}") + elif arg.value not in valid_categories: + errors.append(f"无效的类别: {arg.value}") + # group函数的category参数可以是任何类型(field、category等),不进行类型校验 + + return errors + + def validate_ast(self, ast: Optional[ASTNode], is_in_group_arg: bool = False) -> List[str]: + """递归验证抽象语法树""" + if not ast: + return ["无法解析表达式"] + + errors = [] + + # 根据节点类型进行验证 + if ast.node_type == 'function': + # 检查当前函数是否是group函数 + is_group_function = ast.value.startswith('group_') + # 确定当前是否在group函数的参数链中 + current_in_group_arg = is_in_group_arg or is_group_function + # 验证函数 + function_errors = self.validate_function(ast, current_in_group_arg) + errors.extend(function_errors) + + # 递归验证子节点时使用current_in_group_arg + for child in ast.children: + if isinstance(child, dict): + # 命名参数,验证其值 + if 'value' in child and hasattr(child['value'], 'node_type'): + child_errors = self.validate_ast(child['value'], current_in_group_arg) + errors.extend(child_errors) + elif hasattr(child, 'node_type'): + child_errors = self.validate_ast(child, current_in_group_arg) + errors.extend(child_errors) + elif ast.node_type in ['unop', 'binop']: + # 对操作符的子节点进行验证 + for child in ast.children: + if hasattr(child, 'node_type'): + child_errors = self.validate_ast(child, is_in_group_arg) + errors.extend(child_errors) + elif ast.node_type == 'field': + # 验证字段名 + if not self._is_valid_field(ast.value): + errors.append(f"无效的字段名: {ast.value}") + else: + # 递归验证子节点 + for child in ast.children: + if isinstance(child, dict): + # 命名参数,验证其值 + if 'value' in child and hasattr(child['value'], 'node_type'): + child_errors = self.validate_ast(child['value'], is_in_group_arg) + errors.extend(child_errors) + elif hasattr(child, 'node_type'): + child_errors = self.validate_ast(child, is_in_group_arg) + errors.extend(child_errors) + + return errors + + def _process_semicolon_expression(self, expression: str) -> Tuple[bool, str]: + """处理带有分号的表达式,将其转换为不带分号的简化形式 + + Args: + expression: 要处理的表达式字符串 + + Returns: + Tuple[bool, str]: (是否成功, 转换后的表达式或错误信息) + """ + # 检查表达式是否以分号结尾 + if expression.strip().endswith(';'): + return False, "表达式不能以分号结尾" + + # 分割表达式为语句列表 + statements = [stmt.strip() for stmt in expression.split(';') if stmt.strip()] + if not statements: + return False, "表达式不能为空" + + # 存储变量赋值 + variables = {} + + # 处理每个赋值语句(除了最后一个) + for i, stmt in enumerate(statements[:-1]): + # 检查是否包含赋值符号 + if '=' not in stmt: + return False, f"第{i + 1}个语句必须是赋值语句(使用=符号)" + + # 检查是否是比较操作符(==, !=, <=, >=) + if any(op in stmt for op in ['==', '!=', '<=', '>=']): + # 如果包含比较操作符,需要确认是否有赋值符号 + # 使用临时替换法:将比较操作符替换为临时标记,再检查是否还有= + temp_stmt = stmt + for op in ['==', '!=', '<=', '>=']: + temp_stmt = temp_stmt.replace(op, '---') + + if '=' not in temp_stmt: + return False, f"第{i + 1}个语句必须是赋值语句,不能只是比较表达式" + + # 找到第一个=符号(不是比较操作符的一部分) + # 先将比较操作符替换为临时标记,再找= + temp_stmt = stmt + for op in ['==', '!=', '<=', '>=']: + temp_stmt = temp_stmt.replace(op, '---') + + if '=' not in temp_stmt: + return False, f"第{i + 1}个语句必须是赋值语句(使用=符号)" + + # 找到实际的=位置 + equals_pos = temp_stmt.index('=') + + # 在原始语句中找到对应位置 + real_equals_pos = 0 + temp_count = 0 + for char in stmt: + if temp_count == equals_pos: + break + if char in '!<>': + # 检查是否是比较操作符的一部分 + if real_equals_pos + 1 < len(stmt) and stmt[real_equals_pos + 1] == '=': + # 是比较操作符,跳过两个字符 + real_equals_pos += 2 + temp_count += 3 # 因为替换成了三个字符的--- + else: + real_equals_pos += 1 + temp_count += 1 + else: + real_equals_pos += 1 + temp_count += 1 + + # 分割变量名和值 + var_name = stmt[:real_equals_pos].strip() + var_value = stmt[real_equals_pos + 1:].strip() + + # 检查变量名是否有效 + if not re.match(r'^[a-zA-Z_][a-zA-Z0-9_]*$', var_name): + return False, f"第{i + 1}个语句的变量名'{var_name}'无效,只能包含字母、数字和下划线,且不能以数字开头" + + var_name_lower = var_name.lower() # 变量名不区分大小写 + + # 检查变量名是否在后续表达式中使用 + # 这里不需要,因为后面的表达式会检查 + + # 检查变量值中使用的变量是否已经定义 + # 简单检查:提取所有可能的变量名 + used_vars = re.findall(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', var_value) + for used_var in used_vars: + used_var_lower = used_var.lower() + if used_var_lower not in variables: + # 检查是否是函数名 + if used_var not in supported_functions: + # 对于单个字母或简单单词,不自动视为字段名,要求先定义 + if len(used_var) <= 2: + return False, f"第{i + 1}个语句中使用的变量'{used_var}'未在之前定义" + # 对于较长的字段名,仍然允许作为字段名 + elif not self._is_valid_field(used_var): + return False, f"第{i + 1}个语句中使用的变量'{used_var}'未在之前定义" + + # 将之前定义的变量替换到当前值中 + for existing_var, existing_val in variables.items(): + # 使用单词边界匹配,避免替换到其他单词的一部分 + var_value = re.sub(rf'\b{existing_var}\b', existing_val, var_value) + + # 存储变量 + variables[var_name_lower] = var_value + + # 处理最后一个语句(实际的表达式) + final_stmt = statements[-1] + + # 检查最后一个语句是否是赋值语句 + if '=' in final_stmt: + # 替换比较操作符为临时标记,然后检查是否还有单独的= + temp_stmt = final_stmt + for op in ['==', '!=', '<=', '>=']: + temp_stmt = temp_stmt.replace(op, '---') + + if '=' in temp_stmt: + return False, "最后一个语句不能是赋值语句" + + # 检查最后一个语句中使用的变量是否已经定义 + used_vars = re.findall(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', final_stmt) + for used_var in used_vars: + used_var_lower = used_var.lower() + if used_var_lower not in variables: + # 检查是否是函数名 + if used_var not in supported_functions: + # 在分号表达式中,所有非函数名的标识符都必须是变量,必须在之前定义 + return False, f"最后一个语句中使用的变量'{used_var}'未在之前定义" + + # 将变量替换到最后一个表达式中 + final_expr = final_stmt + for var_name, var_value in variables.items(): + final_expr = re.sub(rf'\b{var_name}\b', var_value, final_expr) + + return True, final_expr + + def check_expression(self, expression: str) -> Dict[str, Any]: + """ + 检查表达式格式是否正确 + + Args: + expression: 要验证的表达式字符串 + + Returns: + 包含验证结果的字典 + """ + # 重置错误列表 + self.errors = [] + + try: + expression = expression.strip() + if not expression: + return { + 'valid': False, + 'errors': ['表达式不能为空'], + 'tokens': [], + 'ast': None + } + + # 处理带有分号的表达式 + if ';' in expression: + success, result = self._process_semicolon_expression(expression) + if not success: + return { + 'valid': False, + 'errors': [result], + 'tokens': [], + 'ast': None + } + expression = result + + # 重置词法分析器的行号 + self.lexer.lineno = 1 + + # 词法分析(用于调试) + self.lexer.input(expression) + tokens = [] + # 调试:打印识别的标记 + print(f"\n调试 - 表达式: {expression}") + print("识别的标记:") + for token in self.lexer: + print(f" - 类型: {token.type}, 值: '{token.value}', 位置: {token.lexpos}") + tokens.append(token) + + # 重新设置词法分析器的输入,以便语法分析器使用 + self.lexer.input(expression) + self.lexer.lineno = 1 + + # 语法分析 + ast = self.parser.parse(expression, lexer=self.lexer) + + # 验证AST + validation_errors = self.validate_ast(ast) + + # 合并所有错误 + all_errors = self.errors + validation_errors + + # 检查括号是否匹配 + bracket_count = 0 + for char in expression: + if char == '(': + bracket_count += 1 + elif char == ')': + bracket_count -= 1 + if bracket_count < 0: + all_errors.append("括号不匹配: 右括号过多") + break + if bracket_count > 0: + all_errors.append("括号不匹配: 左括号过多") + + return { + 'valid': len(all_errors) == 0, + 'errors': all_errors, + 'tokens': tokens, + 'ast': ast + } + except Exception as e: + return { + 'valid': False, + 'errors': [f"解析错误: {str(e)}"], + 'tokens': [], + 'ast': None + } + + +def main(): + """主函数 - 用于验证表达式并输出结果""" + validator = ExpressionValidator() + + # 获取当前日期 + import datetime + today = datetime.datetime.now() + year = str(today.year) + month = str(today.month).zfill(2) # 补齐两位 + day = str(today.day).zfill(2) # 补齐两位 + + # 构建TXT文件路径 + base_dir = os.path.dirname(os.path.abspath(__file__)) # 获取当前py文件所在目录 + generated_alpha_dir = os.path.join(base_dir, "generated_alpha", year, month, day) + + # 检查文件夹是否存在 + if not os.path.exists(generated_alpha_dir): + print(f"错误: 今天的alpha文件夹不存在: {generated_alpha_dir}") + print("请确保AI已经生成了今天的alpha表达式") + return + + # 查找所有的TXT文件 + txt_files = [f for f in os.listdir(generated_alpha_dir) if f.endswith('.txt')] + + if not txt_files: + print(f"错误: 在 {generated_alpha_dir} 目录下没有找到TXT文件") + return + + print(f"找到 {len(txt_files)} 个TXT文件:") + for txt_file in txt_files: + print(f" - {txt_file}") + + # 收集所有表达式 + all_expressions = [] + + # 读取所有TXT文件 + for txt_file in txt_files: + file_path = os.path.join(generated_alpha_dir, txt_file) + try: + with open(file_path, 'r', encoding='utf-8') as f: + # 读取所有行,去除空行和两端的空白字符 + expressions = [line.strip() for line in f.readlines() if line.strip()] + all_expressions.extend(expressions) + print(f"已从 {txt_file} 读取 {len(expressions)} 个表达式") + except Exception as e: + print(f"警告: 读取文件 {txt_file} 失败 - {e}") + continue + + if not all_expressions: + print("错误: 所有TXT文件都是空的或只包含空行") + return + + print(f"\n总共需要验证 {len(all_expressions)} 个表达式...") + + # 验证表达式 + valid_expressions = [] + invalid_expressions = [] + + for i, expr in enumerate(all_expressions, 1): + if i % 10 == 0: + print(f"已验证 {i}/{len(all_expressions)} 个表达式") + + result = validator.check_expression(expr) + if result["valid"]: + valid_expressions.append(expr) + else: + invalid_expressions.append({ + "expression": expr, + "errors": result["errors"] + }) + # 打印错误信息(可选) + print(f"表达式 {i} 验证失败: {expr}") + if result["errors"]: + for error in result["errors"]: + print(f" - {error}") + + # 保存有效表达式到 .手动处理每天alpha.txt + if valid_expressions: + output_path = os.path.join(base_dir, "手动处理每天alpha.txt") + try: + with open(output_path, 'w', encoding='utf-8') as f: + # 每个表达式一行 + for expr in valid_expressions: + f.write(expr + "\n") + print(f"有效表达式已保存到: {output_path}") + + # 如果需要,也可以保留源文件名信息 + # source_info_path = os.path.join(base_dir, "手动处理每天alpha_source_info.txt") + # with open(source_info_path, 'w', encoding='utf-8') as f: + # f.write(f"生成日期: {year}-{month}-{day}\n") + # f.write(f"源文件数量: {len(txt_files)}\n") + # f.write(f"源文件列表: {', '.join(txt_files)}\n") + # f.write(f"总表达式数: {len(all_expressions)}\n") + # f.write(f"有效表达式数: {len(valid_expressions)}\n") + # f.write(f"无效表达式数: {len(invalid_expressions)}\n") + except Exception as e: + print(f"错误: 保存有效表达式失败 - {e}") + else: + print("没有有效表达式可保存") + + # 输出无效表达式详细信息 + if invalid_expressions: + print("\n==========================") + print("无效表达式详细信息:") + print("==========================") + + # 按错误类型统计 + error_stats = {} + for item in invalid_expressions: + for error in item["errors"]: + # 提取主要错误类型 + error_type = error.split(":")[0] if ":" in error else error + error_stats[error_type] = error_stats.get(error_type, 0) + 1 + + print("\n错误类型统计:") + for error_type, count in error_stats.items(): + print(f" {error_type}: {count} 个") + + print("\n无效表达式列表(前20个):") + for i, item in enumerate(invalid_expressions[:20], 1): + print(f"{i}. {item['expression']}") + for error in item["errors"]: + print(f" - {error}") + + if len(invalid_expressions) > 20: + print(f"... 还有 {len(invalid_expressions) - 20} 个无效表达式未显示") + else: + print("\n恭喜!所有表达式都验证通过!") + + # 输出验证结果 + print(f"\n验证完成!") + print(f"总共验证: {len(all_expressions)} 个表达式") + print(f"有效表达式: {len(valid_expressions)}") + print(f"无效表达式: {len(invalid_expressions)}") + + +if __name__ == "__main__": + main() diff --git a/generated_alpha/2026/01/19/deepseek-ai_DeepSeek-V3.2-Exp_141836.txt b/generated_alpha/2026/01/19/deepseek-ai_DeepSeek-V3.2-Exp_141836.txt deleted file mode 100644 index c1d8633..0000000 --- a/generated_alpha/2026/01/19/deepseek-ai_DeepSeek-V3.2-Exp_141836.txt +++ /dev/null @@ -1,77 +0,0 @@ -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) - -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) -ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) \ No newline at end of file diff --git a/parsetab.py b/parsetab.py new file mode 100644 index 0000000..897e7be --- /dev/null +++ b/parsetab.py @@ -0,0 +1,60 @@ + +# parsetab.py +# This file is automatically generated. Do not edit. +# pylint: disable=W,C,R +_tabversion = '3.10' + +_lr_method = 'LALR' + +_lr_signature = 'ASSIGN BOOLEAN CATEGORY COMMA DIVIDE EQUAL FIELD FUNCTION GREATER GREATEREQUAL IDENTIFIER LESS LESSEQUAL LPAREN MINUS NOTEQUAL NUMBER PLUS RPAREN STRING TIMESexpression : comparison\n | expression EQUAL comparison\n | expression NOTEQUAL comparison\n | expression GREATER comparison\n | expression LESS comparison\n | expression GREATEREQUAL comparison\n | expression LESSEQUAL comparisoncomparison : term\n | comparison PLUS term\n | comparison MINUS termterm : factor\n | term TIMES factor\n | term DIVIDE factorfactor : NUMBER\n | STRING\n | FIELD\n | CATEGORY\n | IDENTIFIER\n | BOOLEAN\n | MINUS factor\n | LPAREN expression RPAREN\n | function_callfunction_call : FUNCTION LPAREN args RPARENargs : arg_list\n | emptyarg_list : arg\n | arg_list COMMA argarg : expression\n | IDENTIFIER ASSIGN expressionempty :' + +_lr_action_items = {'NUMBER':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,]),'STRING':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,]),'FIELD':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,]),'CATEGORY':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,]),'IDENTIFIER':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[10,10,10,10,10,10,10,10,10,10,10,10,10,44,44,10,]),'BOOLEAN':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,]),'MINUS':([0,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,44,45,46,47,],[4,22,-8,4,-11,-14,-15,-16,-17,-18,-19,4,-22,4,4,4,4,4,4,4,4,4,4,-20,4,22,22,22,22,22,22,-9,-10,-12,-13,-21,-18,-23,4,4,]),'LPAREN':([0,4,12,14,15,16,17,18,19,20,21,22,23,24,27,46,47,],[12,12,12,27,12,12,12,12,12,12,12,12,12,12,12,12,12,]),'FUNCTION':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,]),'$end':([1,2,3,5,6,7,8,9,10,11,13,25,28,29,30,31,32,33,34,35,36,37,38,45,],[0,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,-23,]),'EQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[15,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,15,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,15,-18,-23,15,]),'NOTEQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[16,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,16,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,16,-18,-23,16,]),'GREATER':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[17,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,17,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,17,-18,-23,17,]),'LESS':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[18,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,18,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,18,-18,-23,18,]),'GREATEREQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[19,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,19,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,19,-18,-23,19,]),'LESSEQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[20,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,20,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,20,-18,-23,20,]),'RPAREN':([2,3,5,6,7,8,9,10,11,13,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,48,49,],[-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,38,-30,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,45,-24,-25,-26,-28,-18,-23,-27,-29,]),'COMMA':([2,3,5,6,7,8,9,10,11,13,25,28,29,30,31,32,33,34,35,36,37,38,40,42,43,44,45,48,49,],[-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,46,-26,-28,-18,-23,-27,-29,]),'PLUS':([2,3,5,6,7,8,9,10,11,13,25,28,29,30,31,32,33,34,35,36,37,38,44,45,],[21,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,21,21,21,21,21,21,-9,-10,-12,-13,-21,-18,-23,]),'TIMES':([3,5,6,7,8,9,10,11,13,25,34,35,36,37,38,44,45,],[23,-11,-14,-15,-16,-17,-18,-19,-22,-20,23,23,-12,-13,-21,-18,-23,]),'DIVIDE':([3,5,6,7,8,9,10,11,13,25,34,35,36,37,38,44,45,],[24,-11,-14,-15,-16,-17,-18,-19,-22,-20,24,24,-12,-13,-21,-18,-23,]),'ASSIGN':([44,],[47,]),} + +_lr_action = {} +for _k, _v in _lr_action_items.items(): + for _x,_y in zip(_v[0],_v[1]): + if not _x in _lr_action: _lr_action[_x] = {} + _lr_action[_x][_k] = _y +del _lr_action_items + +_lr_goto_items = {'expression':([0,12,27,46,47,],[1,26,43,43,49,]),'comparison':([0,12,15,16,17,18,19,20,27,46,47,],[2,2,28,29,30,31,32,33,2,2,2,]),'term':([0,12,15,16,17,18,19,20,21,22,27,46,47,],[3,3,3,3,3,3,3,3,34,35,3,3,3,]),'factor':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[5,25,5,5,5,5,5,5,5,5,5,36,37,5,5,5,]),'function_call':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,]),'args':([27,],[39,]),'arg_list':([27,],[40,]),'empty':([27,],[41,]),'arg':([27,46,],[42,48,]),} + +_lr_goto = {} +for _k, _v in _lr_goto_items.items(): + for _x, _y in zip(_v[0], _v[1]): + if not _x in _lr_goto: _lr_goto[_x] = {} + _lr_goto[_x][_k] = _y +del _lr_goto_items +_lr_productions = [ + ("S' -> expression","S'",1,None,None,None), + ('expression -> comparison','expression',1,'p_expression','expression_validator.py',355), + ('expression -> expression EQUAL comparison','expression',3,'p_expression','expression_validator.py',356), + ('expression -> expression NOTEQUAL comparison','expression',3,'p_expression','expression_validator.py',357), + ('expression -> expression GREATER comparison','expression',3,'p_expression','expression_validator.py',358), + ('expression -> expression LESS comparison','expression',3,'p_expression','expression_validator.py',359), + ('expression -> expression GREATEREQUAL comparison','expression',3,'p_expression','expression_validator.py',360), + ('expression -> expression LESSEQUAL comparison','expression',3,'p_expression','expression_validator.py',361), + ('comparison -> term','comparison',1,'p_comparison','expression_validator.py',368), + ('comparison -> comparison PLUS term','comparison',3,'p_comparison','expression_validator.py',369), + ('comparison -> comparison MINUS term','comparison',3,'p_comparison','expression_validator.py',370), + ('term -> factor','term',1,'p_term','expression_validator.py',377), + ('term -> term TIMES factor','term',3,'p_term','expression_validator.py',378), + ('term -> term DIVIDE factor','term',3,'p_term','expression_validator.py',379), + ('factor -> NUMBER','factor',1,'p_factor','expression_validator.py',386), + ('factor -> STRING','factor',1,'p_factor','expression_validator.py',387), + ('factor -> FIELD','factor',1,'p_factor','expression_validator.py',388), + ('factor -> CATEGORY','factor',1,'p_factor','expression_validator.py',389), + ('factor -> IDENTIFIER','factor',1,'p_factor','expression_validator.py',390), + ('factor -> BOOLEAN','factor',1,'p_factor','expression_validator.py',391), + ('factor -> MINUS factor','factor',2,'p_factor','expression_validator.py',392), + ('factor -> LPAREN expression RPAREN','factor',3,'p_factor','expression_validator.py',393), + ('factor -> function_call','factor',1,'p_factor','expression_validator.py',394), + ('function_call -> FUNCTION LPAREN args RPAREN','function_call',4,'p_function_call','expression_validator.py',422), + ('args -> arg_list','args',1,'p_args','expression_validator.py',426), + ('args -> empty','args',1,'p_args','expression_validator.py',427), + ('arg_list -> arg','arg_list',1,'p_arg_list','expression_validator.py',434), + ('arg_list -> arg_list COMMA arg','arg_list',3,'p_arg_list','expression_validator.py',435), + ('arg -> expression','arg',1,'p_arg','expression_validator.py',442), + ('arg -> IDENTIFIER ASSIGN expression','arg',3,'p_arg','expression_validator.py',443), + ('empty -> ','empty',0,'p_empty','expression_validator.py',450), +]