任务指令 你是一个WorldQuant WebSim因子工程师。你的任务是生成 10 个用于行业轮动策略的复合型Alpha因子表达式。 核心规则 设计维度框架 维度1:时间序列动量(TM) 核心概念:捕捉行业价格的趋势、动量和形态变化 设计思路: 动量的变化率、加速度或平滑度构建 动量衰减或增强模式识别 价格与成交量关系的时序分析 维度2:横截面领导力(CL) 核心概念:识别行业内部的分化、龙头效应和相对强度 bucket(用于龙头股筛选) 设计思路: 行业内部龙头股与平均表现的差异 行业成分股的离散度分析 相对排名的变化和稳定性 维度3:市场状态适应性(MS) 核心概念:根据市场环境动态调整因子逻辑 设计思路: 波动率调整的动量指标 不同市场状态(高/低波动)使用不同的回顾期 条件逻辑下的参数动态调整 维度4:行业间联动(IS) 多序列相关性分析 设计思路: 领先-滞后行业的相关性分析 行业间动量传导效应 板块轮动的早期信号识别 维度5:交易行为情绪(TS) 核心概念:基于交易行为和情绪指标的反转信号 设计思路: 超买超卖状态识别 交易拥挤度指标 情绪极端值后的均值回归 复合因子设计原则 强制要求: 每个表达式必须融合至少两个设计维度 必须使用提供的操作符列表中的函数 因子应具有经济逻辑解释性 推荐组合模式: TM + CL:时序动量 + 横截面领导力 示例:行业动量加速度 × 龙头股相对强度 TM + MS:时序动量 + 状态适应性 示例:波动率调整后的动量指标 CL + IS:横截面 + 行业间联动 示例:龙头股表现与相关行业的领先滞后关系 MS + TS:状态适应 + 交易情绪 示例:不同市场状态下的反转信号 IS + TS:行业联动 + 交易情绪 示例:行业间相关性变化与交易拥挤度 参数化建议: 使用不同的时间窗口组合(短/中/长周期) 尝试不同的权重分配方式 考虑非线性变换(log, power, sqrt) 使用条件逻辑增强鲁棒性 表达式构建指南 基本结构: text 复合因子 = 维度A组件 [运算符] 维度B组件 [条件调整] 操作符限制:只能且必须使用以下列表中提供的操作符。严禁使用任何列表外的函数(例如 ts_regression_slope 不存在,必须用 ts_regression(y, x, d, 0, 1) 来获取斜率)。 操作符使用策略: 算术运算:abs(x), add(x, y, filter = false), densify(x), divide(x, y), inverse(x), max(x, y, ..), min(x, y ..), multiply(x ,y, ... , filter=false), power(x, y), reverse(x), sign(x), signed_power(x, y), sqrt(x), subtract(x, y, filter=false) 条件逻辑:and(input1, input2), if_else(input1, input2, input 3), input1 < input2, input1 <= input2, input1 == input2, input1 > input2, input1 >= input2, input1!= input2, is_nan(input), not(x), or(input1, input2) 时间序列操作:days_from_last_change(x), hump(x, hump = 0.01), kth_element(x, d, k), last_diff_value(x, d), ts_arg_max(x, d), ts_arg_min(x, d), ts_av_diff(x, d), ts_backfill(x,lookback = d, k=1, ignore="NAN"), ts_corr(x, y, d), ts_count_nans(x ,d), ts_covariance(y, x, d), ts_decay_linear(x, d, dense = false), ts_delay(x, d), ts_delta(x, d), ts_mean(x, d), ts_product(x, d), "ts_quantile(x,d, driver=""gaussian"" )", ts_rank(x, d, constant = 0), ts_regression(y, x, d, lag = 0, rettype = 0), ts_scale(x, d, constant = 0), ts_std_dev(x, d), ts_step(1), ts_sum(x, d), ts_zscore(x, d) 横截面操作: normalize(x, useStd = false, limit = 0.0), quantile(x, driver = gaussian, sigma = 1.0), rank(x, rate=2), scale(x, scale=1, longscale=1, shortscale=1), winsorize(x, std=4), zscore(x) 向量操作符:vec_avg(x), vec_sum(x) 转换操作符: bucket(rank(x), range="0, 1, 0.1" or buckets = "2,5,6,7,10"), trade_when(x, y, z) 聚合操作符: group_backfill(x, group, d, std = 4.0), group_mean(x, weight, group), group_neutralize(x, group), group_rank(x, group), group_scale(x, group), group_zscore(x, group), subtract(x, y, filter=false), multiply(x ,y, ... , filter=false), divide(x, y), add(x, y, filter = false) *=====* 注意事项: 避免过度复杂的嵌套 使用经济直觉验证逻辑合理性 考虑实际交易可行性 包含风险控制元素(如波动率调整) *=====* 参数逻辑:参数d(回顾期)应在[5, 10, 20, 30, 60, 120]等具有市场意义(周、月、季度、半年)的数值中合理选择并差异化。 行业隐含:通过group_mean、group_rank等函数或假设表达式在行业指数上运行来体现“行业”逻辑。 输出格式: 输出必须是且仅是纯文本。 每一行是一个完整、独立、语法正确的WebSim表达式。 严禁任何形式的解释、编号、标点包裹(如引号)、Markdown格式或额外文本。 示例思维(仅供理解,不输出) 一个融合“龙头股趋势加速度(M)”与“行业整体情绪背离(R)”的因子思路,可用你的操作符实现为(此为示例, 读取操作符的使用说明, 并结合上述的维度方案, 组合并创新因子): multiply( ts_delta(group_mean(ts_regression(close, ts_step(1), 20, 0, 1), bucket(rank(close), "0.7,1")), 5), reverse(ts_corr(ts_zscore(volume, 20), ts_zscore(close, 20), 10)) ) 这里,ts_regression(..., rettype=1)获取斜率代替动量,bucket(rank(close), "0.7,1")近似选取市值前30%的龙头股,ts_corr(...)衡量价量情绪,reverse将其转化为背离信号。 现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。 **输出格式**(一行一个表达式, 只要表达式本身, 不要解释, 不需要序号, 也不要输出多余的东西): 表达式 表达式 表达式 ... 表达式 请提供具体的WQ表达式。 重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。 以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子 以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子