# -*- coding: utf-8 -*- import os import random import sys import openai import httpx import csv from datetime import datetime import jieba sys.path.append(os.path.join(os.path.abspath(__file__).split('AlphaGenerator')[0] + 'AlphaGenerator')) PROJECT_PATH = os.path.join(os.path.abspath(__file__).split('AlphaGenerator')[0] + 'AlphaGenerator') PREPARE_PROMPT = os.path.join(PROJECT_PATH, 'prepare_prompt') KEYS_TEXT = os.path.join(PREPARE_PROMPT, 'keys_text.txt') TEMPERATURE = 0.1 USE_AI = 1 SILICONFLOW_API_KEY = "sk-pvdiisdowmuwkrpnxsrlhxaovicqibmlljwrwwvbbdjaitdl" SILICONFLOW_BASE_URL = "https://api.siliconflow.cn/v1" MODELS = [ 'Pro/deepseek-ai/DeepSeek-V3.1-Terminus', 'deepseek-ai/DeepSeek-V3.2-Exp', 'Qwen/Qwen3-VL-235B-A22B-Instruct', # 'MiniMaxAI/MiniMax-M2', # 'zai-org/GLM-4.6', # 'inclusionAI/Ring-flash-2.0', # 'zai-org/GLM-4.6', # 'inclusionAI/Ling-flash-2.0', # 'inclusionAI/Ring-flash-2.0', ] def process_text(text): filter_list = ['\n', '\t', '\r', '\b', '\f', '\v', ':', '的', '或', '10', '天', '了', '可', '是', '该', ',', ' ', '、', '让', '和', '集', '/', '日', '在', '(', '_', '-', ')', '(', '上', '距', '与', '比', '下', '及', ')', '...', ';', '%', '&', '+', ',', '.', ':', ';', '<', '=', '>', '?', '[', ']', '|', '—', '。' ] text_list = jieba.lcut(text) results = [] for tl in text_list: should_include = True for fl in filter_list: if fl == tl: should_include = False break if should_include: results.append(tl.lower()) results = [item for item in results if item != '"' and len(item) > 2] if results: return list(set(results)) else: return None def load_keys_text(): if not os.path.exists(KEYS_TEXT): print(f"文件不存在: {KEYS_TEXT}") exit(1) with open(KEYS_TEXT, 'r', encoding='utf-8') as f: text_list = [line.strip() for line in f if line.strip()] if not text_list: print('关键词文本无数据, 程序退出') exit(1) result_str = process_text(';'.join(text_list)) print(f'\n关键词文本处理结果: {result_str}\n') return result_str def txtFileLoader(file_path): if not os.path.exists(file_path): print(f"文件不存在: {file_path}") exit(1) with open(file_path, 'r', encoding='utf-8') as f: return [line.strip() for line in f if line.strip()] def csvFileLoader(file_path, keys_text): if not os.path.exists(file_path): print(f"文件不存在: {file_path}") exit(1) data_dict = {} # 使用字典来存储,以id为键 with open(file_path, 'r', encoding='utf-8') as f: reader = csv.reader(f) for row in reader: for key in keys_text: if key in row[11] or key in row[12]: item_id = row[0] # 如果id不存在,或者想要保留第一个出现的记录 if item_id not in data_dict: data_dict[item_id] = { 'data_set_name': f"可以使用:{row[1]}", 'description': f"不可使用,仅供参考:{row[2]}", # 'description_cn': row[11], } # 将字典的值转换为列表 return list(data_dict.values()) def read_prompt(alpha_prompt_path): if not os.path.exists(alpha_prompt_path): print("alpha_prompt.txt文件不存在") exit(1) with open(alpha_prompt_path, 'r', encoding='utf-8') as f: prompt = f.read().strip() if not prompt: print("alpha_prompt.txt是空的") exit(1) return prompt.replace('\n\n', '\n') def read_operator(operator_prompt_path): if not os.path.exists(operator_prompt_path): print("wqb_operator.txt文件不存在") exit(1) with open(operator_prompt_path, 'r', encoding='utf-8') as f: operator_lines = [line.strip() for line in f.readlines() if line.strip()] if not operator_lines: print("wqb_operator.txt是空的") exit(1) return "\n".join(operator_lines) def create_result_folder(): folder_name = "generated_alpha" if not os.path.exists(folder_name): os.makedirs(folder_name) now = datetime.now() year_folder = os.path.join(folder_name, str(now.year)) month_folder = os.path.join(year_folder, f"{now.month:02d}") day_folder = os.path.join(month_folder, f"{now.day:02d}") if not os.path.exists(year_folder): os.makedirs(year_folder) if not os.path.exists(month_folder): os.makedirs(month_folder) if not os.path.exists(day_folder): os.makedirs(day_folder) return day_folder def call_siliconflow(prompt, model): try: client = openai.OpenAI( api_key=SILICONFLOW_API_KEY, base_url=SILICONFLOW_BASE_URL ) response = client.chat.completions.create( model=model, messages=[ {"role": "system", "content": "你是一个专业的量化投资专家,擅长编写Alpha因子。"}, {"role": "user", "content": prompt} ], temperature=TEMPERATURE ) return response.choices[0].message.content except openai.AuthenticationError: print("API密钥错误") except openai.RateLimitError: print("调用频率限制") except openai.APIError as e: print(f"API错误: {e}") except Exception as e: print(f"其他错误: {e}") exit(1) def save_result(result, folder, model_name): now = datetime.now() time_filename = now.strftime("%H%M%S") filename = f"{model_name}_{time_filename}.txt" filepath = os.path.join(folder, filename) with open(filepath, 'w', encoding='utf-8') as f: f.write(result) print(f"结果保存到: {filepath}") def get_user_info(): headers = {"Authorization": f"Bearer {SILICONFLOW_API_KEY}"} url = "https://api.siliconflow.cn/v1/user/info" response = httpx.get(url, headers=headers) data = response.json()['data'] balance = data['totalBalance'] print(f"余额: {balance}") return float(balance) def manual_prompt(prompt): manual_prompt_path = os.path.join(PROJECT_PATH, "manual_prompt") if not os.path.exists(manual_prompt_path): os.makedirs(manual_prompt_path) now = datetime.now() year_folder = os.path.join(manual_prompt_path, str(now.year)) month_folder = os.path.join(year_folder, f"{now.month:02d}") day_folder = os.path.join(month_folder, f"{now.day:02d}") if not os.path.exists(year_folder): os.makedirs(year_folder) if not os.path.exists(month_folder): os.makedirs(month_folder) if not os.path.exists(day_folder): os.makedirs(day_folder) # 文件名后添加保存时间 filename = f"manual_prompt_{now.strftime('%Y%m%d%H%M%S')}.txt" filepath = os.path.join(day_folder, filename) with open(filepath, 'w', encoding='utf-8') as f: f.write(prompt) print(f"手动提示词保存到: {filepath}") def call_ai(prompt, model): balance = get_user_info() folder = create_result_folder() print(f"正在调用AI...{model}") result = call_siliconflow(prompt, model) if result: print(f"AI回复: {result[:200]}...") model_name = model.replace("/", "_") save_result(result, folder, model_name) used_balance = balance - get_user_info() print(f'本次调用 api 使用额度 {used_balance}') else: print("AI调用失败") def prepare_prompt(data_sets): prompt = '' # 读取基础提示词 alpha_prompt_path = os.path.join(PREPARE_PROMPT, "alpha_prompt.txt") prompt += read_prompt(alpha_prompt_path) # 读取操作符 prompt += "\n\n以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子\n\n" prompt += "========================= 操作符开始 =======================================\n" prompt += "注意: Operator: 后面的是操作符(是可以使用的),\nDescription: 此字段后面的是操作符对应的描述或使用说明(禁止使用, 仅供参考), Description字段后面的内容是使用说明, 不是操作符\n" prompt += "特别注意!!!! 必须按照操作符字段Operator的使用说明生成 alpha" operator_prompt_path = os.path.join(PREPARE_PROMPT, "operator.txt") operator = read_operator(operator_prompt_path) prompt += operator prompt += "\n========================= 操作符结束 =======================================\n\n" prompt += "========================= 数据字段开始 =======================================\n" prompt += "注意: data_set_name: 后面的是数据字段(可以使用), description: 此字段后面的是数据字段对应的描述或使用说明(不能使用), description_cn字段后面的内容是中文使用说明(不能使用)\n\n" for data_set in data_sets: prompt += str(data_set) + '\n' prompt += "========================= 数据字段结束 =======================================\n\n" prompt += "以上数据字段和操作符, 按照Description说明组合, 但是每一个 alpha 组合的使用的数据字段和操作符不要过于集中, 在符合语法的情况下, 多尝试不同的组合" return prompt def main(): # 将金融逻辑, 分割成标签 keys_text = load_keys_text() # 分割好的标签, 搜索对应的数据集, 返回匹配到的结果 data_sets_path = os.path.join(PREPARE_PROMPT, "all_data_combined.csv") result_data_sets = csvFileLoader(data_sets_path, keys_text) if not result_data_sets: print(f'搜索数据集为空, 程序退出') exit(1) data_sets = 0 print(f'从数据集中提取了 {len(result_data_sets)} 条数据') if len(result_data_sets) > 500: data_sets = random.sample(result_data_sets, 10) else: data_sets = result_data_sets # 组合提示词 prompt = prepare_prompt(data_sets) # # 如果需要手动在页面段模型, 使用提示词, 打开这个, 将生成的提示词存到本地 manual_prompt(prompt) if USE_AI: for model in MODELS: # 如果需要使用模型, 打开这个 call_ai(prompt, model) if __name__ == "__main__": main()