"""Alpha 因子表达式生成器 - 增强随机版本""" import random import itertools from typing import List class AlphaGenerator: """增强版因子表达式生成器,支持随机生成多样化因子""" def __init__(self, seed=None): if seed: random.seed(seed) # 基础操作符和函数库 OPERATORS = ['+', '-', '*', '/'] UNARY_OPERATORS = ['-', 'abs', 'rank', 'log', 'power', 'sqrt'] TIME_SERIES_FUNCTIONS = [ 'delay', 'ts_mean', 'ts_std_dev', 'ts_rank', 'ts_decay_linear', 'ts_corr', 'ts_skewness', 'ts_kurtosis', 'ts_max', 'ts_min', 'ts_sum', 'ts_product', 'ts_delta', 'ts_returns' ] GROUP_FUNCTIONS = [ 'group_rank', 'group_mean', 'group_std', 'group_neutralize', 'group_zscore', 'group_percentile' ] CONDITIONAL_FUNCTIONS = [ 'if_else', 'trade_when', 'condition_filter', 'signal_when' ] # 基础字段模板 BASE_FIELDS = ['open', 'close', 'high', 'low', 'volume', 'returns', 'vwap', 'turnover', 'volatility', 'cap', 'market_cap'] def generate_random_expression(self, datafields, depth=0, max_depth=3): """递归生成随机表达式""" if depth >= max_depth or random.random() < 0.3: # 叶子节点 - 选择基础字段或常数 if random.random() < 0.7 and datafields: field = random.choice(datafields) return field else: return f"{random.uniform(0.1, 10.0):.2f}" # 选择操作类型 op_type = random.choice(['binary', 'unary', 'ts_function', 'group_function', 'conditional']) if op_type == 'binary': left = self.generate_random_expression(datafields, depth + 1, max_depth) right = self.generate_random_expression(datafields, depth + 1, max_depth) op = random.choice(self.OPERATORS) return f"({left} {op} {right})" elif op_type == 'unary': arg = self.generate_random_expression(datafields, depth + 1, max_depth) op = random.choice(self.UNARY_OPERATORS) if op in ['-', 'abs']: return f"{op}({arg})" else: return f"{op}({arg}, {random.randint(1, 30)})" elif op_type == 'ts_function': func = random.choice(self.TIME_SERIES_FUNCTIONS) arg1 = self.generate_random_expression(datafields, depth + 1, max_depth) lookback = random.choice([5, 10, 20, 30, 60, 90, 252]) if func in ['ts_corr', 'ts_covariance']: arg2 = self.generate_random_expression(datafields, depth + 1, max_depth) return f"{func}({arg1}, {arg2}, {lookback})" else: return f"{func}({arg1}, {lookback})" elif op_type == 'group_function': func = random.choice(self.GROUP_FUNCTIONS) arg = self.generate_random_expression(datafields, depth + 1, max_depth) group_by = random.choice(['subindustry', 'industry', 'sector', 'bucket(cap, range="0.1,1,0.1")']) return f"{func}({arg}, {group_by})" else: # conditional func = random.choice(self.CONDITIONAL_FUNCTIONS) condition = self.generate_random_expression(datafields, depth + 1, max_depth) true_val = self.generate_random_expression(datafields, depth + 1, max_depth) false_val = self.generate_random_expression(datafields, depth + 1, max_depth) return f"{func}({condition} > 0, {true_val}, {false_val})" def generate_basic_strategies(self, datafields, count=50): """生成基础单因子策略""" strategies = [] for _ in range(count): # 随机选择1-3个字段组合 num_fields = random.randint(1, 3) selected_fields = random.sample(datafields, min(num_fields, len(datafields))) # 生成随机表达式 expr = self.generate_random_expression(selected_fields) # 添加分组操作 if random.random() < 0.7: group_by = random.choice(['subindustry', 'industry']) expr = f"group_rank({expr}, {group_by})" strategies.append(expr) return strategies def generate_multi_factor_strategies(self, datafields, count=50): """生成多因子组合策略""" strategies = [] for _ in range(count): # 选择更多字段进行复杂组合 num_fields = random.randint(2, 5) selected_fields = random.sample(datafields, min(num_fields, len(datafields))) # 生成更复杂的表达式 expr = self.generate_random_expression(selected_fields, max_depth=4) # 添加中性化或标准化 if random.random() < 0.6: neutral_type = random.choice(['group_neutralize', 'regression_neut', 'vector_neut']) if neutral_type == 'group_neutralize': group_by = random.choice(['subindustry', 'industry', 'sector']) expr = f"{neutral_type}({expr}, {group_by})" else: # 为回归中性化选择另一个因子 other_field = random.choice([f for f in datafields if f not in selected_fields] or selected_fields) expr = f"{neutral_type}({expr}, {other_field})" strategies.append(expr) return strategies def generate_advanced_strategies(self, datafields, count=30): """生成高级策略(均值回归、动量、波动率策略等)""" strategies = [] # 均值回归策略 for _ in range(count // 3): field = random.choice(datafields) lookback = random.choice([5, 10, 20, 30]) expr = f"-ts_rank({field} - ts_mean({field}, {lookback}), 20)" strategies.append(f"group_neutralize({expr}, subindustry)") # 动量策略 for _ in range(count // 3): field = random.choice(datafields) short_lookback = random.choice([1, 2, 3, 5]) long_lookback = random.choice([10, 20, 30, 60]) expr = f"ts_mean({field}, {short_lookback}) - ts_mean({field}, {long_lookback})" strategies.append(f"group_rank({expr}, subindustry)") # 波动率策略 for _ in range(count // 3): field = random.choice(datafields) vol_lookback = random.choice([10, 20, 30]) expr = f"{field} / ts_std_dev({field}, {vol_lookback})" strategies.append(f"group_rank({expr}, subindustry)") return strategies def generate_strategies(self, datafields, mode=1, count=100): """ 生成因子表达式列表 参数: datafields: 数据字段列表 mode: 生成模式 (1=基础策略, 2=多因子组合, 3=高级策略, 4=混合模式) count: 生成数量 返回: 因子表达式列表 """ all_fields = datafields + self.BASE_FIELDS unique_fields = list(set(all_fields)) # 去重 if mode == 1: return self.generate_basic_strategies(unique_fields, count) elif mode == 2: return self.generate_multi_factor_strategies(unique_fields, count) elif mode == 3: return self.generate_advanced_strategies(unique_fields, count) elif mode == 4: # 混合模式 - 从所有类型中随机选择 basic = self.generate_basic_strategies(unique_fields, count // 3) multi = self.generate_multi_factor_strategies(unique_fields, count // 3) advanced = self.generate_advanced_strategies(unique_fields, count // 3) return basic + multi + advanced else: print("❌ 无效的生成模式,使用混合模式") return self.generate_strategies(unique_fields, mode=4, count=count) # 使用示例 if __name__ == "__main__": # 示例数据字段 sample_fields = ['volume', 'close', 'open', 'high', 'low', 'returns', 'turnover', 'pe_ratio', 'pb_ratio'] generator = AlphaGenerator(seed=42) # 设置随机种子以便复现 print("=== 基础策略因子 (20个示例) ===") basic_strategies = generator.generate_strategies(sample_fields, mode=1, count=20) for i, strategy in enumerate(basic_strategies[:10], 1): # 只显示前10个 print(f"{i}. {strategy}") print(f"\n共生成 {len(basic_strategies)} 个基础因子") print("\n=== 多因子组合策略 (20个示例) ===") multi_strategies = generator.generate_strategies(sample_fields, mode=2, count=20) for i, strategy in enumerate(multi_strategies[:10], 1): print(f"{i}. {strategy}") print(f"\n共生成 {len(multi_strategies)} 个多因子组合") print("\n=== 随机测试 - 每次运行生成不同的因子 ===") for run in range(3): print(f"\n--- 第{run+1}次运行 ---") random_strategies = generator.generate_strategies(sample_fields, mode=4, count=5) for i, strategy in enumerate(random_strategies, 1): print(f"{i}. {strategy}")