任务指令 你是一个WorldQuant WebSim因子工程师。你的任务是生成 10 个用于行业轮动策略的复合型Alpha因子表达式。 核心规则 设计维度框架 维度1:时间序列动量(TM) 目标:识别价格趋势的强度、速度和持续性 可用的具体构建方法: 1. 简单动量:ts_delta(close, d) [d=5,10,20,30,60] 2. 趋势斜率:ts_regression(close, ts_step(1), d, 0, 1) [rettype=1获取斜率] 3. 动量加速度:ts_delta(ts_delta(close, d1), d2) [避免嵌套ts_regression] 4. 平滑动量:ts_mean(returns, d) [returns=ts_delta(close,1)] 5. 动量衰减:ts_decay_linear(returns, d) 6. 价量关系:ts_corr(ts_delta(close,5), ts_delta(volume,5), d) 建议组合:使用不同d参数创建短期/中期/长期动量 维度2:横截面领导力(CL) 目标:识别行业内的龙头股和相对强度 具体构建方法: 1. 龙头股筛选:if_else(rank(volume) > 0.7, 龙头值, 其他值) [使用volume代替market_cap] 2. 龙头组合:group_mean(x, 1, bucket(rank(volume), range="0,3,0.4")) [使用volume排序] 3. 行业内离散度:ts_std_dev(group_rank(returns, industry), 20) 4. 相对排名稳定性:ts_mean(rank(returns), d) 维度3:市场状态适应性(MS) 目标:根据波动率、趋势状态调整参数 具体构建方法: 1. 波动率调整:ts_delta(close,5) / ts_std_dev(returns,20) 2. 状态条件选择:if_else(ts_rank(volatility,30) > 0.7, 短期动量, 长期动量) 3. 参数动态化:if_else(ts_std_dev(returns,20) > 阈值, 5, 20) [作为d参数] 4. 趋势状态识别:ts_rank(ts_mean(returns,20), 60) > 0.5 基本结构: 复合因子 = 维度A组件 [运算符] 维度B组件 [条件调整] === 关键语法规则(必须遵守) === 1. 数据字段规范: - 可使用字段:close, volume, returns - ❌ 错误:market_cap, marketcap, mkt_cap [这些字段不存在] - ✅ 正确:使用volume作为规模代理,close作为价格 - returns通常定义为:ts_delta(close, 1) 或 close/ts_delay(close,1)-1 2. ts_regression使用规范: - 避免深度嵌套ts_regression,特别是作为其他函数的参数 - ✅ 正确:reg_slope = ts_regression(close, ts_step(1), 30, 0, 1) - ❌ 错误:ts_delta(ts_regression(close, ts_step(1), 30, 0, 1), 5) - 替代方案:用ts_delta组合计算动量变化 3. if_else使用规范: - 条件必须是简单布尔表达式 - 避免序列比较:❌ ts_std_dev(returns,60) > ts_mean(ts_std_dev(returns,60),120) - 正确使用:✅ if_else(ts_rank(ts_std_dev(returns,60), 120) > 0.7, 短期动量, 长期动量) 4. bucket函数使用规范: - bucket()返回分组ID,可用于条件判断 - ✅ 正确:bucket(rank(volume), range="0,3,0.4") == 0 [第一组为大成交量] - ✅ 正确:group_mean(x, 1, bucket(rank(volume), range="0,3,0.4")) - 注意字符串格式:range="起始值,组数,步长" 或 buckets="分割点列表" === 关键语法规则结束 === *=====* 注意事项: 1. 避免过度复杂的嵌套(建议不超过3层) 2. 每个表达式应有明确的经济逻辑 3. 考虑实际交易可行性(避免未来函数) 4. 包含风险控制元素(如波动率调整) 5. 只能使用可用的数据字段:close, volume, returns等 *=====* 参数逻辑:参数d(回顾期)应在[5, 10, 20, 30, 60, 120]等具有市场意义(周、月、季度、半年)的数值中合理选择并差异化。 行业隐含:通过group_mean、group_rank等函数或假设表达式在行业指数上运行来体现"行业"逻辑。 构建框架指导(请按此逻辑创造新因子): 维度融合模板(选择至少2个): A. 领导力动量 = 时序动量 × 横截面调整 逻辑:大成交量股票的动量更强 结构:group_mean(ts_delta(close, d1), 1, bucket(rank(volume), range="0,3,0.4")) B. 状态自适应动量 = 条件选择动量 逻辑:高波动用短期动量,低波动用长期动量 结构:if_else(ts_std_dev(returns,20) > 0.02, ts_delta(close,5), ts_delta(close,20)) C. 行业传导因子 = 领先行业动量 × 相关性强度 逻辑:与强势行业相关性高的行业未来表现好 结构:multiply(ts_corr(group_mean(returns,1,industry), group_mean(returns,1,sector), d1), ts_delta(close,d2)) D. 情绪反转 = 过度交易信号 × 基础趋势 逻辑:过度交易时反转,趋势延续时跟随 结构:multiply(reverse(ts_rank(volume/ts_mean(volume,20), 10)), ts_delta(close,20)) 关键组件库(可自由组合): 1. 动量类:ts_delta(close,{d}), ts_regression(close,ts_step(1),{d},0,1) 2. 波动类:ts_std_dev(returns,{d}), ts_mean(abs(returns),{d}) 3. 成交量类:volume/ts_mean(volume,{d}), ts_zscore(volume,{d}) 4. 横截面类:if_else(rank(volume) > 阈值, 值1, 值2), bucket(rank(volume), range="0,3,0.4") 5. 相关性类:ts_corr({x},{y},{d}) 6. 条件逻辑:if_else({condition}, {true_value}, {false_value}) 参数池:d ∈ [5,10,20,30,60,120], 阈值 ∈ [0.5,0.7,0.8] *=====* 输出格式: 输出必须是且仅是纯文本。 每一行是一个完整、独立、语法正确的WebSim表达式。 严禁任何形式的解释、编号、标点包裹(如引号)、Markdown格式或额外文本。 ===================== !!! 重点(输出方式) !!! ===================== 现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。 **输出格式**(一行一个表达式, 每个表达式中间需要添加一个空行, 只要表达式本身, 不要解释, 不需要序号, 也不要输出多余的东西): 表达式 表达式 表达式 ... 表达式 ================================================================= 重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。 以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子: 以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子 ========================= 操作符开始 =======================================注意: Operator: 后面的是操作符, Description: 此字段后面的是操作符对应的描述或使用说明, Description字段后面的内容是使用说明, 不是操作符 特别注意!!!! 必须按照操作符字段Operator的使用说明生成 alphaOperator: abs(x) Description: Absolute value of x Operator: add(x, y, filter = false) Description: Add all inputs (at least 2 inputs required). If filter = true, filter all input NaN to 0 before adding Operator: densify(x) Description: Converts a grouping field of many buckets into lesser number of only available buckets so as to make working with grouping fields computationally efficient Operator: divide(x, y) Description: x / y Operator: inverse(x) Description: 1 / x Operator: log(x) Description: Natural logarithm. For example: Log(high/low) uses natural logarithm of high/low ratio as stock weights. Operator: max(x, y, ..) Description: Maximum value of all inputs. At least 2 inputs are required Operator: min(x, y ..) Description: Minimum value of all inputs. At least 2 inputs are required Operator: multiply(x ,y, ... , filter=false) Description: Multiply all inputs. At least 2 inputs are required. Filter sets the NaN values to 1 Operator: power(x, y) Description: x ^ y Operator: reverse(x) Description: - x Operator: sign(x) Description: if input > 0, return 1; if input < 0, return -1; if input = 0, return 0; if input = NaN, return NaN; Operator: signed_power(x, y) Description: x raised to the power of y such that final result preserves sign of x Operator: sqrt(x) Description: Square root of x Operator: subtract(x, y, filter=false) Description: x-y. If filter = true, filter all input NaN to 0 before subtracting Operator: and(input1, input2) Description: Logical AND operator, returns true if both operands are true and returns false otherwise Operator: if_else(input1, input2, input 3) Description: If input1 is true then return input2 else return input3. Operator: input1 < input2 Description: If input1 < input2 return true, else return false Operator: input1 <= input2 Description: Returns true if input1 <= input2, return false otherwise Operator: input1 == input2 Description: Returns true if both inputs are same and returns false otherwise Operator: input1 > input2 Description: Logic comparison operators to compares two inputs Operator: input1 >= input2 Description: Returns true if input1 >= input2, return false otherwise Operator: input1!= input2 Description: Returns true if both inputs are NOT the same and returns false otherwise Operator: is_nan(input) Description: If (input == NaN) return 1 else return 0 Operator: not(x) Description: Returns the logical negation of x. If x is true (1), it returns false (0), and if input is false (0), it returns true (1). Operator: or(input1, input2) Description: Logical OR operator returns true if either or both inputs are true and returns false otherwise Operator: days_from_last_change(x) Description: Amount of days since last change of x Operator: hump(x, hump = 0.01) Description: Limits amount and magnitude of changes in input (thus reducing turnover) Operator: kth_element(x, d, k) Description: Returns K-th value of input by looking through lookback days. This operator can be used to backfill missing data if k=1 Operator: last_diff_value(x, d) Description: Returns last x value not equal to current x value from last d days Operator: ts_arg_max(x, d) Description: Returns the relative index of the max value in the time series for the past d days. If the current day has the max value for the past d days, it returns 0. If previous day has the max value for the past d days, it returns 1 Operator: ts_arg_min(x, d) Description: Returns the relative index of the min value in the time series for the past d days; If the current day has the min value for the past d days, it returns 0; If previous day has the min value for the past d days, it returns 1. Operator: ts_av_diff(x, d) Description: Returns x - tsmean(x, d), but deals with NaNs carefully. That is NaNs are ignored during mean computation Operator: ts_backfill(x,lookback = d, k=1, ignore="NAN") Description: Backfill is the process of replacing the NAN or 0 values by a meaningful value (i.e., a first non-NaN value) Operator: ts_corr(x, y, d) Description: Returns correlation of x and y for the past d days Operator: ts_count_nans(x ,d) Description: Returns the number of NaN values in x for the past d days Operator: ts_covariance(y, x, d) Description: Returns covariance of y and x for the past d days Operator: ts_decay_linear(x, d, dense = false) Description: Returns the linear decay on x for the past d days. Dense parameter=false means operator works in sparse mode and we treat NaN as 0. In dense mode we do not. Operator: ts_delay(x, d) Description: Returns x value d days ago Operator: ts_delta(x, d) Description: Returns x - ts_delay(x, d) Operator: ts_mean(x, d) Description: Returns average value of x for the past d days. Operator: ts_product(x, d) Description: Returns product of x for the past d days Operator: ts_quantile(x,d, driver="gaussian" ) Description: It calculates ts_rank and apply to its value an inverse cumulative density function from driver distribution. Possible values of driver (optional ) are "gaussian", "uniform", "cauchy" distribution where "gaussian" is the default. Operator: ts_rank(x, d, constant = 0) Description: Rank the values of x for each instrument over the past d days, then return the rank of the current value + constant. If not specified, by default, constant = 0. Operator: ts_regression(y, x, d, lag = 0, rettype = 0) Description: Returns various parameters related to regression function Operator: ts_scale(x, d, constant = 0) Description: Returns (x - ts_min(x, d)) / (ts_max(x, d) - ts_min(x, d)) + constant. This operator is similar to scale down operator but acts in time series space Operator: ts_std_dev(x, d) Description: Returns standard deviation of x for the past d days Operator: ts_step(1) Description: Returns days' counter Operator: ts_sum(x, d) Description: Sum values of x for the past d days. Operator: ts_zscore(x, d) Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean: (x - tsmean(x,d)) / tsstddev(x,d). This operator may help reduce outliers and drawdown. Operator: normalize(x, useStd = false, limit = 0.0) Description: Calculates the mean value of all valid alpha values for a certain date, then subtracts that mean from each element Operator: quantile(x, driver = gaussian, sigma = 1.0) Description: Rank the raw vector, shift the ranked Alpha vector, apply distribution (gaussian, cauchy, uniform). If driver is uniform, it simply subtract each Alpha value with the mean of all Alpha values in the Alpha vector Operator: rank(x, rate=2) Description: Ranks the input among all the instruments and returns an equally distributed number between 0.0 and 1.0. For precise sort, use the rate as 0 Operator: scale(x, scale=1, longscale=1, shortscale=1) Description: Scales input to booksize. We can also scale the long positions and short positions to separate scales by mentioning additional parameters to the operator Operator: winsorize(x, std=4) Description: Winsorizes x to make sure that all values in x are between the lower and upper limits, which are specified as multiple of std. Operator: zscore(x) Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean Operator: vec_avg(x) Description: Taking mean of the vector field x Operator: vec_sum(x) Description: Sum of vector field x Operator: bucket(rank(x), range="0, 1, 0.1" or buckets = "2,5,6,7,10") Description: Convert float values into indexes for user-specified buckets. Bucket is useful for creating group values, which can be passed to GROUP as input Operator: trade_when(x, y, z) Description: Used in order to change Alpha values only under a specified condition and to hold Alpha values in other cases. It also allows to close Alpha positions (assign NaN values) under a specified condition Operator: group_backfill(x, group, d, std = 4.0) Description: If a certain value for a certain date and instrument is NaN, from the set of same group instruments, calculate winsorized mean of all non-NaN values over last d days Operator: group_mean(x, weight, group) Description: All elements in group equals to the mean Operator: group_neutralize(x, group) Description: Neutralizes Alpha against groups. These groups can be subindustry, industry, sector, country or a constant Operator: group_rank(x, group) Description: Each elements in a group is assigned the corresponding rank in this group Operator: group_scale(x, group) Description: Normalizes the values in a group to be between 0 and 1. (x - groupmin) / (groupmax - groupmin) Operator: group_zscore(x, group) Description: Calculates group Z-score - numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean. zscore = (data - mean) / stddev of x for each instrument within its group. ========================= 操作符结束 ======================================= ========================= 数据字段开始 =======================================注意: DataField: 后面的是数据字段, DataFieldDescription: 此字段后面的是数据字段对应的描述或使用说明, DataFieldDescription字段后面的内容是使用说明, 不是数据字段 DataField: pcr_vol_120 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 120 days in the future. DataField: put_breakeven_270 DataFieldDescription: Price at which a stock's put options with expiration 270 days in the future break even based on its recent bid/ask mean. DataField: call_breakeven_720 DataFieldDescription: Price at which a stock's call options with expiration 720 days in the future break even based on its recent bid/ask mean. DataField: option_breakeven_1080 DataFieldDescription: Price at which a stock's options with expiration 1080 days in the future break even based on its recent bid/ask mean. DataField: pcr_oi_120 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 120 days in the future. DataField: pcr_vol_1080 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 1080 days in the future. DataField: put_breakeven_720 DataFieldDescription: Price at which a stock's put options with expiration 720 days in the future break even based on its recent bid/ask mean. DataField: pcr_oi_20 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 20 days in the future. DataField: put_breakeven_30 DataFieldDescription: Price at which a stock's put options with expiration 30 days in the future break even based on its recent bid/ask mean. DataField: pcr_oi_1080 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 1080 days in the future. DataField: forward_price_150 DataFieldDescription: Forward price at 150 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: call_breakeven_1080 DataFieldDescription: Price at which a stock's call options with expiration 1080 days in the future break even based on its recent bid/ask mean. DataField: put_breakeven_360 DataFieldDescription: Price at which a stock's put options with expiration 360 days in the future break even based on its recent bid/ask mean. DataField: pcr_vol_180 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 180 days in the future. DataField: forward_price_1080 DataFieldDescription: Forward price at 1080 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: call_breakeven_120 DataFieldDescription: Price at which a stock's call options with expiration 120 days in the future break even based on its recent bid/ask mean. DataField: put_breakeven_20 DataFieldDescription: Price at which a stock's put options with expiration 20 days in the future break even based on its recent bid/ask mean. DataField: call_breakeven_90 DataFieldDescription: Price at which a stock's call options with expiration 90 days in the future break even based on its recent bid/ask mean. DataField: pcr_vol_20 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 20 days in the future. DataField: call_breakeven_360 DataFieldDescription: Price at which a stock's call options with expiration 360 days in the future break even based on its recent bid/ask mean. DataField: forward_price_60 DataFieldDescription: Forward price at 60 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: pcr_oi_720 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 720 days in the future. DataField: forward_price_270 DataFieldDescription: Forward price at 270 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: call_breakeven_150 DataFieldDescription: Price at which a stock's call options with expiration 150 days in the future break even based on its recent bid/ask mean. DataField: pcr_vol_360 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 360 days in the future. DataField: pcr_oi_all DataFieldDescription: Ratio of put open interest to call open interest for all maturities on stock's options. DataField: forward_price_180 DataFieldDescription: Forward price at 180 days derived from a synthetic long option with payoff similar to long stock + option dynamics. combination of long ATM call, and short ATM put. DataField: pcr_vol_90 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 90 days in the future. DataField: put_breakeven_180 DataFieldDescription: Price at which a stock's put options with expiration 180 days in the future break even based on its recent bid/ask mean. DataField: forward_price_20 DataFieldDescription: Forward price at 20 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: fnd6_pncepsq DataFieldDescription: Core Pension Adjustment Basic EPS Effect DataField: fnd6_newa1v1300_cshfd DataFieldDescription: Common Shares Used to Calc Earnings Per Share - Fully Diluted DataField: fnd6_newqeventv110_glpq DataFieldDescription: Gain/Loss Pretax DataField: fnd6_newqeventv110_txdbaq DataFieldDescription: Deferred Tax Asset - Long Term DataField: fnd6_newqv1300_esopnrq DataFieldDescription: Preferred ESOP Obligation - Non-Redeemable DataField: fnd6_newa2v1300_xoptd DataFieldDescription: Implied Option EPS Diluted DataField: fnd6_eventv110_dd1q DataFieldDescription: Long Term Debt Due in 1 Year DataField: fnd6_newqeventv110_drltq DataFieldDescription: Deferred Revenue - Long-term DataField: fnd6_newqeventv110_rcaq DataFieldDescription: Restructuring Cost After-tax DataField: fnd6_newa1v1300_csho DataFieldDescription: Common Shares Outstanding DataField: fnd6_np DataFieldDescription: Notes Payable - Short-Term Borrowings DataField: fnd6_npq DataFieldDescription: Notes Payable DataField: fnd6_drlt DataFieldDescription: Deferred Revenue - Long-term DataField: fnd6_newqv1300_loxdrq DataFieldDescription: Liabilities - Other - Excluding Deferred Revenue DataField: fnd6_cptnewqv1300_dlttq DataFieldDescription: Long-Term Debt - Total DataField: fnd6_newqeventv110_seqoq DataFieldDescription: Other Stockholders' Equity Adjustments DataField: fnd6_newqeventv110_pncpeps12 DataFieldDescription: Core Pension Adjustment 12MM Basic EPS Effect Preliminary DataField: fnd6_newqv1300_spceepsp12 DataFieldDescription: S&P Core 12MM EPS - Basic - Preliminary DataField: fnd6_newqeventv110_chq DataFieldDescription: Cash DataField: fnd6_cptnewqeventv110_apq DataFieldDescription: Accounts Payable/Creditors - Trade DataField: fnd6_newqeventv110_esopnrq DataFieldDescription: Preferred ESOP Obligation - Non-Redeemable DataField: fnd6_newa2v1300_rect DataFieldDescription: Receivables - Total DataField: fnd6_cisecgl DataFieldDescription: Comp Inc - Securities Gains/Losses DataField: fnd6_cptnewqeventv110_oeps12 DataFieldDescription: Earnings Per Share from Operations - 12 Months Moving DataField: fnd6_newqeventv110_pncpdq DataFieldDescription: Core Pension Adjustment Diluted EPS Effect Preliminary DataField: fnd6_newqeventv110_cipenq DataFieldDescription: Comp Inc - Minimum Pension Adj DataField: fnd6_ranks DataFieldDescription: Ranking DataField: fnd6_cptnewqv1300_apq DataFieldDescription: Accounts Payable/Creditors - Trade DataField: fnd6_newa1v1300_epspx DataFieldDescription: Earnings Per Share (Basic) - Excluding Extraordinary Items DataField: fnd6_newqeventv110_cheq DataFieldDescription: Cash and Short-Term Investments DataField: scl12_alltype_buzzvec DataFieldDescription: sentiment volume DataField: scl12_alltype_sentvec DataFieldDescription: sentiment DataField: scl12_alltype_typevec DataFieldDescription: instrument type index DataField: scl12_buzz DataFieldDescription: relative sentiment volume DataField: scl12_buzz_fast_d1 DataFieldDescription: relative sentiment volume DataField: scl12_buzzvec DataFieldDescription: sentiment volume DataField: scl12_sentiment DataFieldDescription: sentiment DataField: scl12_sentiment_fast_d1 DataFieldDescription: sentiment DataField: scl12_sentvec DataFieldDescription: sentiment DataField: scl12_typevec DataFieldDescription: instrument type index DataField: snt_buzz DataFieldDescription: negative relative sentiment volume, fill nan with 0 DataField: snt_buzz_bfl DataFieldDescription: negative relative sentiment volume, fill nan with 1 DataField: snt_buzz_bfl_fast_d1 DataFieldDescription: negative relative sentiment volume, fill nan with 1 DataField: snt_buzz_fast_d1 DataFieldDescription: negative relative sentiment volume, fill nan with 0 DataField: snt_buzz_ret DataFieldDescription: negative return of relative sentiment volume DataField: snt_buzz_ret_fast_d1 DataFieldDescription: negative return of relative sentiment volume DataField: snt_value DataFieldDescription: negative sentiment, fill nan with 0 DataField: snt_value_fast_d1 DataFieldDescription: negative sentiment, fill nan with 0 DataField: analyst_revision_rank_derivative DataFieldDescription: Change in ranking for analyst revisions and momentum compared to previous period. DataField: cashflow_efficiency_rank_derivative DataFieldDescription: Change in ranking for cash flow generation and profitability compared to previous period. DataField: composite_factor_score_derivative DataFieldDescription: Change in overall composite factor score from the prior period. DataField: earnings_certainty_rank_derivative DataFieldDescription: Change in ranking for earnings sustainability and certainty compared to previous period. DataField: fscore_bfl_growth DataFieldDescription: The purpose of this metric is to qualify the expected MT growth potential of the stock. DataField: fscore_bfl_momentum DataFieldDescription: The purpose of this metric is to identify stocks which are currently undergoing either up or downward analyst revisions. DataField: fscore_bfl_profitability DataFieldDescription: The purpose of this metric is to rank stock based on their ability to generate cash flows. DataField: fscore_bfl_quality DataFieldDescription: The purpose of this metric is to measure both the sustainability and certainty of earnings. DataField: fscore_bfl_surface DataFieldDescription: The static score. An index between 0 & 100 is applied for each stock and each composite factor - The first ranking is a pentagon surface-based score. The larger the surface, the higher the rank. DataField: fscore_bfl_surface_accel DataFieldDescription: The derivative score. In a second step, we calculate the derivative of this score (ie: Is the surface of the pentagon increasing or decreasing from the previous month?). DataField: fscore_bfl_total DataFieldDescription: The final score M-Score is a weighted average of both the Pentagon surface score and the Pentagon acceleration score. DataField: fscore_bfl_value DataFieldDescription: The purpose of this metric is to see if the stock is under or overpriced given several well known valuation standards. DataField: fscore_growth DataFieldDescription: The purpose of this metric is to qualify the expected MT growth potential of the stock. DataField: fscore_momentum DataFieldDescription: The purpose of this metric is to identify stocks which are currently undergoing either up or downward analyst revisions. DataField: fscore_profitability DataFieldDescription: The purpose of this metric is to rank stock based on their ability to generate cash flows. DataField: fscore_quality DataFieldDescription: The purpose of this metric is to measure both the sustainability and certainty of earnings. DataField: fscore_surface DataFieldDescription: The static score. An index between 0 & 100 is applied for each stock and each composite factor - The first ranking is a pentagon surface-based score. The larger the surface, the higher the rank. DataField: fscore_surface_accel DataFieldDescription: The derivative score. In a second step, we calculate the derivative of this score (ie: Is the surface of the pentagon increasing or decreasing from the previous month?). DataField: fscore_total DataFieldDescription: The final score M-Score is a weighted average of both the Pentagon surface score and the Pentagon acceleration score. DataField: fscore_value DataFieldDescription: The purpose of this metric is to see if the stock is under or overpriced given several well known valuation standards. DataField: growth_potential_rank_derivative DataFieldDescription: Change in ranking for medium-term growth potential compared to previous period. DataField: multi_factor_acceleration_score_derivative DataFieldDescription: Change in the acceleration of multi-factor score compared to previous period. DataField: multi_factor_static_score_derivative DataFieldDescription: Change in static multi-factor score compared to previous period. DataField: relative_valuation_rank_derivative DataFieldDescription: Change in ranking for valuation metrics compared to previous period. DataField: snt_social_value DataFieldDescription: Z score of sentiment DataField: snt_social_volume DataFieldDescription: Normalized tweet volume DataField: beta_last_30_days_spy DataFieldDescription: Beta to SPY in 30 Days DataField: beta_last_360_days_spy DataFieldDescription: Beta to SPY in 360 Days DataField: beta_last_60_days_spy DataFieldDescription: Beta to SPY in 60 Days DataField: beta_last_90_days_spy DataFieldDescription: Beta to SPY in 90 Days DataField: correlation_last_30_days_spy DataFieldDescription: Correlation to SPY in 30 Days DataField: correlation_last_360_days_spy DataFieldDescription: Correlation to SPY in 360 Days DataField: correlation_last_60_days_spy DataFieldDescription: Correlation to SPY in 60 Days DataField: correlation_last_90_days_spy DataFieldDescription: Correlation to SPY in 90 Days DataField: systematic_risk_last_30_days DataFieldDescription: Systematic Risk Last 30 Days DataField: systematic_risk_last_360_days DataFieldDescription: Systematic Risk Last 360 Days DataField: systematic_risk_last_60_days DataFieldDescription: Systematic Risk Last 60 Days DataField: systematic_risk_last_90_days DataFieldDescription: Systematic Risk Last 90 Days DataField: unsystematic_risk_last_30_days DataFieldDescription: Unsystematic Risk Last 30 Days - Relative to SPY DataField: unsystematic_risk_last_360_days DataFieldDescription: Unsystematic Risk Last 360 Days - Relative to SPY DataField: unsystematic_risk_last_60_days DataFieldDescription: Unsystematic Risk Last 60 Days - Relative to SPY DataField: unsystematic_risk_last_90_days DataFieldDescription: Unsystematic Risk Last 90 Days - Relative to SPY DataField: anl4_qf_az_eps DataFieldDescription: EPS - aggregation on estimations, 50th percentile DataField: est_netprofit_adj DataFieldDescription: Adjusted net income - Mean of estimations DataField: anl4_fsdtlestmtsafv4_item DataFieldDescription: Financial item DataField: anl4_guiqfv4_est DataFieldDescription: Estimation value DataField: anl4_totgw_high DataFieldDescription: Total Goodwill - The highest estimation DataField: anl4_gric_std DataFieldDescription: Gross income - std of estimations DataField: anl4_qfd1_az_cfps_median DataFieldDescription: Cash Flow Per Share - Median value among forecasts DataField: max_book_value_per_share_guidance DataFieldDescription: Book value per share - Maximum value among forecasts DataField: min_share_count_guidance DataFieldDescription: Minimum guidance for shares on an annual basis DataField: anl4_cuo1actualqfv110_actual DataFieldDescription: Announced financial data DataField: anl4_afv4_maxguidance DataFieldDescription: Max guidance value DataField: anl4_dez1basicqfv4v104_est DataFieldDescription: Estimation value DataField: cash_flow_financing_max_guidance DataFieldDescription: Cash Flow From Financing - Maximum guidance value provided annually DataField: anl4_qfv4_maxguidance DataFieldDescription: Max guidance value DataField: operating_profit_before_depr_amort DataFieldDescription: EBITDA value - Annual DataField: min_total_assets_guidance_2 DataFieldDescription: Minimum guidance value for Total Assets on an annual basis DataField: anl4_qfd1_az_cfps_number DataFieldDescription: Cash Flow Per Share - number of estimations DataField: min_basic_shares_guidance DataFieldDescription: Shares Basic - Minimum guidance value DataField: anl4_bvps_value DataFieldDescription: Book value per share - announced financial value DataField: min_tangible_book_value_per_share_guidance DataFieldDescription: Tangible Book Value per Share - minimum guidance value DataField: previous_recommendation_value DataFieldDescription: The previous estimation of financial item for recommendation DataField: anl4_fsguidanceqfv4_minguidance DataFieldDescription: Min guidance value DataField: anl4_dez1safv4_est DataFieldDescription: Estimation value DataField: max_capital_expenditure_guidance DataFieldDescription: The maximum guidance value for Capital Expenditures on an annual basis. DataField: minimum_guidance_value DataFieldDescription: Minimum guidance value for basic annual financials DataField: anl4_rd_exp_number DataFieldDescription: Research and Development Expense - Number of Estimations DataField: anl4_dez1basicqfv4_est DataFieldDescription: Estimation value DataField: anl4_ebitda_low DataFieldDescription: Earnings before interest, taxes, depreciation and amortization - The lowest estimation DataField: est_ptpr DataFieldDescription: Reported pretax income - mean of estimations DataField: guidance_value_currency_code_qtr DataFieldDescription: Home currency of instrument DataField: pv13_r2_min2_3000_sector DataFieldDescription: grouping fields DataField: pv13_revere_index_cap DataFieldDescription: Company market capitalization DataField: pv13_hierarchy_min51_f2_sector DataFieldDescription: grouping fields DataField: primary_sector_focused_company_count DataFieldDescription: Number of companies primarily focused in a given sector. DataField: pv13_hierarchy_min50_f3_513_sector DataFieldDescription: grouping fields DataField: pv13_reportperiodend DataFieldDescription: Stated end date for the report DataField: pv13_hierarchy_min20_3k_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min22_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min5_f3g2_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min10_sector DataFieldDescription: grouping fields DataField: rel_num_all DataFieldDescription: number of the companies whose product overlapped with the instrument DataField: pv13_hierarchy_min10_industry_3000_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min30_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min2_3000_513_sector DataFieldDescription: grouping fields DataField: pv13_h_f3_sector DataFieldDescription: grouping fields DataField: pv13_r2_min20_3000_sector DataFieldDescription: grouping fields DataField: pv13_rha2_min10_1000_513_sector DataFieldDescription: grouping fields DataField: pv13_reveremap DataFieldDescription: Mapping data DataField: pv13_hierarchy_min2_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_f1_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min10_top3000_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min20_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min10_3k_all_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min2_focused_pureplay_3000_513_sector DataFieldDescription: grouping fields DataField: pv13_r2_min20_1000_sector DataFieldDescription: grouping fields DataField: pv13_di_6l DataFieldDescription: grouping fields DataField: rel_num_cust DataFieldDescription: number of the instrument's customers DataField: pv13_revere_term_sector_total DataFieldDescription: Number of terminal sectors for the company DataField: pv13_com_page_rank DataFieldDescription: the PageRank of competitors DataField: pv13_h_min52_3000_sector DataFieldDescription: grouping fields DataField: implied_volatility_mean_skew_90 DataFieldDescription: At-the-money option-implied volatility mean skew for 90 days DataField: implied_volatility_call_30 DataFieldDescription: At-the-money option-implied volatility for call Option for 30 days DataField: implied_volatility_put_10 DataFieldDescription: At-the-money option-implied volatility for Put Option for 10 days DataField: implied_volatility_call_180 DataFieldDescription: At-the-money option-implied volatility for call Option for 180 days DataField: parkinson_volatility_150 DataFieldDescription: Parkinson model's historical volatility over 150 days DataField: implied_volatility_put_90 DataFieldDescription: At-the-money option-implied volatility for Put Option for 90 days DataField: implied_volatility_put_30 DataFieldDescription: At-the-money option-implied volatility for Put Option for 30 days DataField: implied_volatility_call_1080 DataFieldDescription: At-the-money option-implied volatility for call option for 1080 days DataField: implied_volatility_call_360 DataFieldDescription: At-the-money option-implied volatility for call Option for 360 days DataField: implied_volatility_put_360 DataFieldDescription: At-the-money option-implied volatility for Put Option for 360 days DataField: implied_volatility_mean_skew_60 DataFieldDescription: At-the-money option-implied volatility mean skew for 60 days DataField: implied_volatility_mean_360 DataFieldDescription: At-the-money option-implied volatility mean for 360 days DataField: implied_volatility_put_150 DataFieldDescription: At-the-money option-implied volatility for Put Option for 150 days DataField: parkinson_volatility_10 DataFieldDescription: Parkinson model's historical volatility over 2 weeks DataField: implied_volatility_mean_10 DataFieldDescription: At-the-money option-implied volatility mean for 10 days DataField: implied_volatility_mean_20 DataFieldDescription: At-the-money option-implied volatility mean for 20 days DataField: implied_volatility_mean_skew_30 DataFieldDescription: At-the-money option-implied volatility mean skew for 30 days DataField: implied_volatility_call_10 DataFieldDescription: At-the-money option-implied volatility for call Option for 10 days DataField: implied_volatility_put_120 DataFieldDescription: At-the-money option-implied volatility for Put Option for 120 days DataField: implied_volatility_put_270 DataFieldDescription: At-the-money option-implied volatility for Put Option for 270 days DataField: implied_volatility_mean_skew_720 DataFieldDescription: At-the-money option-implied volatility mean skew for 720 days DataField: implied_volatility_mean_90 DataFieldDescription: At-the-money option-implied volatility mean for 90 days DataField: implied_volatility_call_720 DataFieldDescription: At-the-money option-implied volatility for call Option for 720 days DataField: implied_volatility_mean_1080 DataFieldDescription: At-the-money option-implied volatility mean for 3 years DataField: implied_volatility_mean_150 DataFieldDescription: At-the-money option-implied volatility mean for 150 days DataField: implied_volatility_mean_180 DataFieldDescription: At-the-money option-implied volatility mean for 180 days DataField: implied_volatility_call_60 DataFieldDescription: At-the-money option-implied volatility for call Option for 60 days DataField: implied_volatility_mean_skew_270 DataFieldDescription: At-the-money option-implied volatility mean skew for 270 days DataField: implied_volatility_mean_skew_150 DataFieldDescription: At-the-money option-implied volatility mean skew for 150 days DataField: historical_volatility_120 DataFieldDescription: Close-to-close Historical volatility over 120 days DataField: nws12_mainz_5s DataFieldDescription: Number of minutes that elapsed before price went down 5 percentage points DataField: nws12_mainz_maxup DataFieldDescription: Percent change from the price at the time of the news to the after the news high DataField: nws12_mainz_result2 DataFieldDescription: Percent change between the price at the time of the news release to the price at the close of the session DataField: news_mins_4_pct_up DataFieldDescription: Number of minutes that elapsed before price went up 4 percentage points DataField: nws12_afterhsz_tonlast DataFieldDescription: Price at the time of news DataField: nws12_afterhsz_range DataFieldDescription: Session High Price - Session Low Price) / Session Low Price. DataField: news_mins_10_pct_dn DataFieldDescription: Number of minutes that elapsed before price went down 10 percentage points DataField: nws12_prez_range DataFieldDescription: Session High Price - Session Low Price) / Session Low Price. DataField: nws12_allz_reportsess DataFieldDescription: Index of Session on which the spreadsheet is reporting DataField: news_pct_90min DataFieldDescription: The percent change in price in the first 90 minutes following the news release DataField: news_eod_low DataFieldDescription: Lowest price reached between the time of news and the end of the session DataField: nws12_afterhsz_1s DataFieldDescription: Number of minutes that elapsed before price went down 1 percentage point DataField: nws12_afterhsz_2s DataFieldDescription: Number of minutes that elapsed before price went down 2 percentage points DataField: news_max_dn_amt DataFieldDescription: The price at the time of the news minus the after the news low DataField: nws12_prez_peratio DataFieldDescription: Reported price to earnings ratio for the calendar day of the session DataField: nws12_afterhsz_1l DataFieldDescription: Number of minutes that elapsed before price went up 1 percentage points DataField: news_range_stddev DataFieldDescription: (RangeAmt - AvgRange) / RangeStdDev, where AvgRange is the average of the daily range, and RangeStdDev is one standard deviation for the daily range, both for 30 calendar days DataField: news_mins_3_pct_up DataFieldDescription: Number of minutes that elapsed before price went up 3 percentage points DataField: nws12_mainz_reportsess DataFieldDescription: Index of Session on which the spreadsheet is reporting DataField: news_ton_high DataFieldDescription: Highest price reached during the session before the time of news DataField: news_mins_7_5_pct_up DataFieldDescription: Number of minutes that elapsed before price went up 7.5 percentage points DataField: nws12_prez_57p DataFieldDescription: The minimum of L or S above for 7.5-minute bucket DataField: nws12_mainz_rangeamt DataFieldDescription: Session High Price - Session Low Price DataField: nws12_afterhsz_01l DataFieldDescription: Number of minutes that elapsed before price went up 10 percentage points DataField: nws12_afterhsz_120_min DataFieldDescription: The percent change in price in the first 120 minutes following the news release DataField: nws12_mainz_allvwap DataFieldDescription: Volume weighted average price of all sessions DataField: nws12_mainz_prev_vol DataFieldDescription: Previous day's session volume DataField: nws12_afterhsz_newssess DataFieldDescription: Index of the session in which the news was reported DataField: nws12_prez_tonlow DataFieldDescription: Lowest price reached during the session before the time of the news DataField: nws12_mainz_highexcstddev DataFieldDescription: (EODHigh - TONLast)/StdDev, where StdDev is one standard deviation for the close price for 30 calendar days DataField: top1000 DataFieldDescription: 20140630 DataField: top200 DataFieldDescription: 20140630 DataField: top3000 DataFieldDescription: 20140630 DataField: top500 DataFieldDescription: 20140630 DataField: topsp500 DataFieldDescription: 20140630 DataField: rp_ess_dividends DataFieldDescription: Event sentiment score of dividends news DataField: rp_ess_technical DataFieldDescription: Event sentiment score based on technical analysis DataField: rp_ess_legal DataFieldDescription: Event sentiment score of legal news DataField: rp_css_product DataFieldDescription: Composite sentiment score of product and service-related news DataField: rp_nip_labor DataFieldDescription: News impact projection of labor issues news DataField: rp_css_marketing DataFieldDescription: Composite sentiment score of marketing news DataField: rp_css_legal DataFieldDescription: Composite sentiment score of legal news DataField: rp_nip_product DataFieldDescription: News impact projection of product and service-related news DataField: rp_ess_insider DataFieldDescription: Event sentiment score of insider trading news DataField: rp_nip_ratings DataFieldDescription: News impact projection of analyst ratings-related news DataField: rp_nip_mna DataFieldDescription: News impact projection of mergers and acquisitions-related news DataField: rp_ess_labor DataFieldDescription: Event sentiment score of labor issues news DataField: rp_css_credit DataFieldDescription: Composite sentiment score of credit news DataField: rp_nip_inverstor DataFieldDescription: News impact projection of investor relations news DataField: rp_ess_earnings DataFieldDescription: Event sentiment score of earnings news DataField: rp_css_dividends DataFieldDescription: Composite sentiment score of dividends news DataField: rp_ess_product DataFieldDescription: Event sentiment score of product and service-related news DataField: rp_nip_equity DataFieldDescription: News impact projection of equity action news DataField: nws18_bee DataFieldDescription: News sentiment specializing in growth of earnings DataField: rp_ess_ratings DataFieldDescription: Event sentiment score of analyst ratings-related news DataField: rp_nip_partner DataFieldDescription: News impact projection of partnership news DataField: rp_ess_mna DataFieldDescription: Event sentiment score of mergers and acquisitions-related news DataField: rp_ess_price DataFieldDescription: Event sentiment score of stock price news DataField: rp_css_equity DataFieldDescription: Composite sentiment score of equity action news DataField: rp_nip_technical DataFieldDescription: News impact projection based on technical analysis DataField: rp_ess_credit_ratings DataFieldDescription: Event sentiment score of credit ratings news DataField: nws18_relevance DataFieldDescription: Relevance of news to the company DataField: rp_nip_business DataFieldDescription: News impact projection of business-related news DataField: rp_nip_marketing DataFieldDescription: News impact projection of marketing news DataField: rp_nip_credit DataFieldDescription: News impact projection of credit news DataField: fn_comp_options_grants_weighted_avg_a DataFieldDescription: Weighted average price at which grantees could have acquired the underlying shares with respect to stock options that were terminated. DataField: fnd2_asdm DataFieldDescription: Assets, Domestic DataField: fn_op_lease_min_pay_due_in_4y_a DataFieldDescription: Amount of required minimum rental payments for operating leases having an initial or remaining non-cancelable lease term in excess of 1 year due in the 4th fiscal year following the latest fiscal year. Excludes interim and annual periods when interim periods are reported on a rolling approach, from latest balance sheet date. DataField: fnd2_dbplanartonplas DataFieldDescription: Defined Benefit Plan, Benefits Paid, Plan Assets DataField: fn_comp_non_opt_vested_a DataFieldDescription: The number of equity-based payment instruments, excluding stock (or unit) options, that vested during the reporting period. DataField: fn_def_tax_assets_liab_net_q DataFieldDescription: Amount, after allocation of valuation allowances and deferred tax liability, of deferred tax asset attributable to deductible differences and carryforwards, without jurisdictional netting. DataField: fn_comp_options_exercises_weighted_avg_q DataFieldDescription: Share-Based Compensation, Options Assumed, Weighted Average Exercise Price DataField: fnd2_q_flintasamt1expythree DataFieldDescription: Amount of amortization expense for assets, excluding financial assets and goodwill, lacking physical substance with a finite life expected to be recognized during the 3rd fiscal year following the latest fiscal year. Excludes interim and annual periods when interim periods are reported on a rolling approach, from latest balance sheet date. DataField: fn_repayments_of_lines_of_credit_q DataFieldDescription: Amount of cash outflow for payment of an obligation from a lender, including but not limited to, letter of credit, standby letter of credit and revolving credit arrangements. DataField: fn_intangible_assets_accum_amort_q DataFieldDescription: Accumulated amount of amortization of assets, excluding financial assets and goodwill, lacking physical substance with a finite life. DataField: fn_comp_non_opt_nonvested_number_q DataFieldDescription: The number of non-vested equity-based payment instruments, excluding stock (or unit) options, that validly exist and are outstanding as of the balance sheet date. DataField: fn_comp_options_out_number_a DataFieldDescription: Number of options outstanding, including both vested and non-vested options. DataField: fnd2_dfdfritxexp DataFieldDescription: Income Tax Expense, Deferred - Foreign DataField: fnd2_dbplanchgbnfolintcst DataFieldDescription: Defined Benefit Plan Change In Benefit Obligation Interest Cost DataField: fn_prepaid_expense_q DataFieldDescription: Carrying amount for an unclassified balance sheet date of expenditures made in advance of when the economic benefit of the cost will be realized, and which will be expensed in future periods with the passage of time or when a triggering event occurs. For a classified balance sheet, represents the noncurrent portion of prepaid expenses (the current portion has a separate concept). DataField: fn_comp_options_grants_fair_value_a DataFieldDescription: Annual Share-Based Compensation Arrangement by Share-Based Payment Award Options Grants in Period Weighted Average Grant Date Fair Value DataField: fn_liab_fair_val_l1_a DataFieldDescription: Liabilities Fair Value, Recurring, Level 1 DataField: fn_op_lease_min_pay_due_a DataFieldDescription: Amount of required minimum rental payments for leases having an initial or remaining non-cancelable letter-terms in excess of 1 year. DataField: fn_comp_options_forfeitures_and_expirations_a DataFieldDescription: For presentations that combine terminations, the number of shares under options that were canceled during the reporting period as a result of occurrence of a terminating event specified in contractual agreements pertaining to the stock option plan or that expired. DataField: fn_comp_options_exercisable_number_a DataFieldDescription: The number of shares into which fully or partially vested stock options outstanding as of the balance sheet date can be currently converted under the option plan. DataField: fn_incremental_shares_attributable_to_share_based_payment_q DataFieldDescription: Additional shares included in the calculation of diluted EPS as a result of the potentially dilutive effect of share-based payment arrangements using the treasury stock method. DataField: fnd2_dbplanbnfpaid DataFieldDescription: The amount of payments made for which participants are entitled under a pension plan, including pension benefits, death benefits, and benefits due on termination of employment. Also includes payments made under a postretirement benefit plan, including prescription drug benefits, health care benefits, life insurance benefits, and legal, educational and advisory services. This item represents a periodic decrease to the plan obligations and a decrease to plan assets. DataField: fn_payments_for_repurchase_of_common_stock_q DataFieldDescription: Value reported on Cash Flow Statement. May include shares repurchased as part of a buyback plan, as well as shares purchased for employee compensation, etc. DataField: fnd2_a_ltrmdmrepoplinythree DataFieldDescription: Amount of long-term debt payable, sinking fund requirements, and other securities issued that are redeemable by holder at fixed or determinable prices and dates maturing in the 3rd fiscal year following the latest fiscal year. Excludes interim and annual periods when interim periods are reported on a rolling approach, from latest balance sheet date. DataField: fn_comp_options_out_number_q DataFieldDescription: Number of options outstanding, including both vested and non-vested options. DataField: fn_derivative_notional_amount_q DataFieldDescription: Nominal or face amount used to calculate payments on the derivative liability. DataField: fn_line_of_credit_facility_max_borrowing_capacity_a DataFieldDescription: Maximum borrowing capacity under the credit facility without consideration of any current restrictions on the amount that could be borrowed or the amounts currently outstanding under the facility. DataField: fn_oth_income_loss_available_for_sale_securities_adj_of_tax_a DataFieldDescription: Amount after tax and reclassification adjustments, of appreciation (loss) in value of unsold available-for-sale securities. Excludes amounts related to other than temporary impairment (OTTI) loss. DataField: fnd2_a_acmopclcchngcfectnt DataFieldDescription: Accumulated change, net of tax, in accumulated gains and losses from derivative instruments designated and qualifying as the effective portion of cash flow hedges. Includes an entity's share of an equity investee's Increase or Decrease in deferred hedging gains or losses. DataField: fnd2_a_sbcpnargmsptawervl DataFieldDescription: Amount of accumulated difference between fair value of underlying shares on dates of exercise and exercise price on options exercised (or share units converted) into shares. DataField: adv20 DataFieldDescription: Average daily volume in past 20 days DataField: cap DataFieldDescription: Daily market capitalization (in millions) DataField: close DataFieldDescription: Daily close price DataField: country DataFieldDescription: Country grouping DataField: currency DataFieldDescription: Currency DataField: cusip DataFieldDescription: CUSIP Value DataField: dividend DataFieldDescription: Dividend DataField: exchange DataFieldDescription: Exchange grouping DataField: high DataFieldDescription: Daily high price DataField: industry DataFieldDescription: Industry grouping DataField: isin DataFieldDescription: ISIN Value DataField: low DataFieldDescription: Daily low price DataField: market DataFieldDescription: Market grouping DataField: open DataFieldDescription: Daily open price DataField: returns DataFieldDescription: Daily returns DataField: sector DataFieldDescription: Sector grouping DataField: sedol DataFieldDescription: Sedol DataField: sharesout DataFieldDescription: Daily outstanding shares (in millions) DataField: split DataFieldDescription: Stock split ratio DataField: subindustry DataFieldDescription: Subindustry grouping DataField: ticker DataFieldDescription: Ticker DataField: volume DataFieldDescription: Daily volume DataField: vwap DataFieldDescription: Daily volume weighted average price ========================= 数据字段结束 =======================================