任务指令 你是一个WorldQuant WebSim因子工程师。你的任务是生成 100 个用于行业轮动策略的复合型Alpha因子表达式。 核心规则 设计维度框架 维度1:时间序列动量(TM) 目标:识别价格趋势的强度、速度和持续性 可用的具体构建方法: 1. 简单动量:ts_delta(close, d) [d=5,10,20,30,60] 2. 趋势斜率:ts_regression(close, ts_step(1), d, 0, 1) [rettype=1获取斜率] 3. 动量加速度:ts_delta(ts_delta(close, d1), d2) [避免嵌套ts_regression] 4. 平滑动量:ts_mean(returns, d) [returns=ts_delta(close,1)] 5. 动量衰减:ts_decay_linear(returns, d) 6. 价量关系:ts_corr(ts_delta(close,5), ts_delta(volume,5), d) 建议组合:使用不同d参数创建短期/中期/长期动量 维度2:横截面领导力(CL) 目标:识别行业内的龙头股和相对强度 具体构建方法: 1. 龙头股筛选:if_else(rank(volume) > 0.7, 龙头值, 其他值) [使用volume代替market_cap] 2. 龙头组合:group_mean(x, 1, bucket(rank(volume), range="0,3,0.4")) [使用volume排序] 3. 行业内离散度:ts_std_dev(group_rank(returns, industry), 20) 4. 相对排名稳定性:ts_mean(rank(returns), d) 维度3:市场状态适应性(MS) 目标:根据波动率、趋势状态调整参数 具体构建方法: 1. 波动率调整:ts_delta(close,5) / ts_std_dev(returns,20) 2. 状态条件选择:if_else(ts_rank(volatility,30) > 0.7, 短期动量, 长期动量) 3. 参数动态化:if_else(ts_std_dev(returns,20) > 阈值, 5, 20) [作为d参数] 4. 趋势状态识别:ts_rank(ts_mean(returns,20), 60) > 0.5 基本结构: 复合因子 = 维度A组件 [运算符] 维度B组件 [条件调整] === 关键语法规则(必须遵守) === 1. 数据字段规范: - 可使用字段:close, volume, returns - ❌ 错误:market_cap, marketcap, mkt_cap [这些字段不存在] - ✅ 正确:使用volume作为规模代理,close作为价格 - returns通常定义为:ts_delta(close, 1) 或 close/ts_delay(close,1)-1 2. ts_regression使用规范: - 避免深度嵌套ts_regression,特别是作为其他函数的参数 - ✅ 正确:reg_slope = ts_regression(close, ts_step(1), 30, 0, 1) - ❌ 错误:ts_delta(ts_regression(close, ts_step(1), 30, 0, 1), 5) - 替代方案:用ts_delta组合计算动量变化 3. if_else使用规范: - 条件必须是简单布尔表达式 - 避免序列比较:❌ ts_std_dev(returns,60) > ts_mean(ts_std_dev(returns,60),120) - 正确使用:✅ if_else(ts_rank(ts_std_dev(returns,60), 120) > 0.7, 短期动量, 长期动量) 4. bucket函数使用规范: - bucket()返回分组ID,可用于条件判断 - ✅ 正确:bucket(rank(volume), range="0,3,0.4") == 0 [第一组为大成交量] - ✅ 正确:group_mean(x, 1, bucket(rank(volume), range="0,3,0.4")) - 注意字符串格式:range="起始值,组数,步长" 或 buckets="分割点列表" === 关键语法规则结束 === *=====* 注意事项: 1. 避免过度复杂的嵌套(建议不超过3层) 2. 每个表达式应有明确的经济逻辑 3. 考虑实际交易可行性(避免未来函数) 4. 包含风险控制元素(如波动率调整) 5. 只能使用可用的数据字段:close, volume, returns等 *=====* 参数逻辑:参数d(回顾期)应在[5, 10, 20, 30, 60, 120]等具有市场意义(周、月、季度、半年)的数值中合理选择并差异化。 行业隐含:通过group_mean、group_rank等函数或假设表达式在行业指数上运行来体现"行业"逻辑。 构建框架指导(请按此逻辑创造新因子): 维度融合模板(选择至少2个): A. 领导力动量 = 时序动量 × 横截面调整 逻辑:大成交量股票的动量更强 结构:group_mean(ts_delta(close, d1), 1, bucket(rank(volume), range="0,3,0.4")) B. 状态自适应动量 = 条件选择动量 逻辑:高波动用短期动量,低波动用长期动量 结构:if_else(ts_std_dev(returns,20) > 0.02, ts_delta(close,5), ts_delta(close,20)) C. 行业传导因子 = 领先行业动量 × 相关性强度 逻辑:与强势行业相关性高的行业未来表现好 结构:multiply(ts_corr(group_mean(returns,1,industry), group_mean(returns,1,sector), d1), ts_delta(close,d2)) D. 情绪反转 = 过度交易信号 × 基础趋势 逻辑:过度交易时反转,趋势延续时跟随 结构:multiply(reverse(ts_rank(volume/ts_mean(volume,20), 10)), ts_delta(close,20)) 关键组件库(可自由组合): 1. 动量类:ts_delta(close,{d}), ts_regression(close,ts_step(1),{d},0,1) 2. 波动类:ts_std_dev(returns,{d}), ts_mean(abs(returns),{d}) 3. 成交量类:volume/ts_mean(volume,{d}), ts_zscore(volume,{d}) 4. 横截面类:if_else(rank(volume) > 阈值, 值1, 值2), bucket(rank(volume), range="0,3,0.4") 5. 相关性类:ts_corr({x},{y},{d}) 6. 条件逻辑:if_else({condition}, {true_value}, {false_value}) 参数池:d ∈ [5,10,20,30,60,120], 阈值 ∈ [0.5,0.7,0.8] *=====* 输出格式: 输出必须是且仅是纯文本。 每一行是一个完整、独立、语法正确的WebSim表达式。 严禁任何形式的解释、编号、标点包裹(如引号)、Markdown格式或额外文本。 ===================== !!! 重点(输出方式) !!! ===================== 现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。 **输出格式**(一行一个表达式, 每个表达式中间需要添加一个空行, 只要表达式本身, 不要解释, 不需要序号, 也不要输出多余的东西): 表达式 表达式 表达式 ... 表达式 ================================================================= 重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。 以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子: 以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子 ========================= 操作符开始 =======================================注意: Operator: 后面的是操作符, Description: 此字段后面的是操作符对应的描述或使用说明, Description字段后面的内容是使用说明, 不是操作符 特别注意!!!! 必须按照操作符字段Operator的使用说明生成 alphaOperator: abs(x) Description: Absolute value of x Operator: add(x, y, filter = false) Description: Add all inputs (at least 2 inputs required). If filter = true, filter all input NaN to 0 before adding Operator: densify(x) Description: Converts a grouping field of many buckets into lesser number of only available buckets so as to make working with grouping fields computationally efficient Operator: divide(x, y) Description: x / y Operator: inverse(x) Description: 1 / x Operator: log(x) Description: Natural logarithm. For example: Log(high/low) uses natural logarithm of high/low ratio as stock weights. Operator: max(x, y, ..) Description: Maximum value of all inputs. At least 2 inputs are required Operator: min(x, y ..) Description: Minimum value of all inputs. At least 2 inputs are required Operator: multiply(x ,y, ... , filter=false) Description: Multiply all inputs. At least 2 inputs are required. Filter sets the NaN values to 1 Operator: power(x, y) Description: x ^ y Operator: reverse(x) Description: - x Operator: sign(x) Description: if input > 0, return 1; if input < 0, return -1; if input = 0, return 0; if input = NaN, return NaN; Operator: signed_power(x, y) Description: x raised to the power of y such that final result preserves sign of x Operator: sqrt(x) Description: Square root of x Operator: subtract(x, y, filter=false) Description: x-y. If filter = true, filter all input NaN to 0 before subtracting Operator: and(input1, input2) Description: Logical AND operator, returns true if both operands are true and returns false otherwise Operator: if_else(input1, input2, input 3) Description: If input1 is true then return input2 else return input3. Operator: input1 < input2 Description: If input1 < input2 return true, else return false Operator: input1 <= input2 Description: Returns true if input1 <= input2, return false otherwise Operator: input1 == input2 Description: Returns true if both inputs are same and returns false otherwise Operator: input1 > input2 Description: Logic comparison operators to compares two inputs Operator: input1 >= input2 Description: Returns true if input1 >= input2, return false otherwise Operator: input1!= input2 Description: Returns true if both inputs are NOT the same and returns false otherwise Operator: is_nan(input) Description: If (input == NaN) return 1 else return 0 Operator: not(x) Description: Returns the logical negation of x. If x is true (1), it returns false (0), and if input is false (0), it returns true (1). Operator: or(input1, input2) Description: Logical OR operator returns true if either or both inputs are true and returns false otherwise Operator: days_from_last_change(x) Description: Amount of days since last change of x Operator: hump(x, hump = 0.01) Description: Limits amount and magnitude of changes in input (thus reducing turnover) Operator: kth_element(x, d, k) Description: Returns K-th value of input by looking through lookback days. This operator can be used to backfill missing data if k=1 Operator: last_diff_value(x, d) Description: Returns last x value not equal to current x value from last d days Operator: ts_arg_max(x, d) Description: Returns the relative index of the max value in the time series for the past d days. If the current day has the max value for the past d days, it returns 0. If previous day has the max value for the past d days, it returns 1 Operator: ts_arg_min(x, d) Description: Returns the relative index of the min value in the time series for the past d days; If the current day has the min value for the past d days, it returns 0; If previous day has the min value for the past d days, it returns 1. Operator: ts_av_diff(x, d) Description: Returns x - tsmean(x, d), but deals with NaNs carefully. That is NaNs are ignored during mean computation Operator: ts_backfill(x,lookback = d, k=1, ignore="NAN") Description: Backfill is the process of replacing the NAN or 0 values by a meaningful value (i.e., a first non-NaN value) Operator: ts_corr(x, y, d) Description: Returns correlation of x and y for the past d days Operator: ts_count_nans(x ,d) Description: Returns the number of NaN values in x for the past d days Operator: ts_covariance(y, x, d) Description: Returns covariance of y and x for the past d days Operator: ts_decay_linear(x, d, dense = false) Description: Returns the linear decay on x for the past d days. Dense parameter=false means operator works in sparse mode and we treat NaN as 0. In dense mode we do not. Operator: ts_delay(x, d) Description: Returns x value d days ago Operator: ts_delta(x, d) Description: Returns x - ts_delay(x, d) Operator: ts_mean(x, d) Description: Returns average value of x for the past d days. Operator: ts_product(x, d) Description: Returns product of x for the past d days Operator: ts_quantile(x,d, driver="gaussian" ) Description: It calculates ts_rank and apply to its value an inverse cumulative density function from driver distribution. Possible values of driver (optional ) are "gaussian", "uniform", "cauchy" distribution where "gaussian" is the default. Operator: ts_rank(x, d, constant = 0) Description: Rank the values of x for each instrument over the past d days, then return the rank of the current value + constant. If not specified, by default, constant = 0. Operator: ts_regression(y, x, d, lag = 0, rettype = 0) Description: Returns various parameters related to regression function Operator: ts_scale(x, d, constant = 0) Description: Returns (x - ts_min(x, d)) / (ts_max(x, d) - ts_min(x, d)) + constant. This operator is similar to scale down operator but acts in time series space Operator: ts_std_dev(x, d) Description: Returns standard deviation of x for the past d days Operator: ts_step(1) Description: Returns days' counter Operator: ts_sum(x, d) Description: Sum values of x for the past d days. Operator: ts_zscore(x, d) Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean: (x - tsmean(x,d)) / tsstddev(x,d). This operator may help reduce outliers and drawdown. Operator: normalize(x, useStd = false, limit = 0.0) Description: Calculates the mean value of all valid alpha values for a certain date, then subtracts that mean from each element Operator: quantile(x, driver = gaussian, sigma = 1.0) Description: Rank the raw vector, shift the ranked Alpha vector, apply distribution (gaussian, cauchy, uniform). If driver is uniform, it simply subtract each Alpha value with the mean of all Alpha values in the Alpha vector Operator: rank(x, rate=2) Description: Ranks the input among all the instruments and returns an equally distributed number between 0.0 and 1.0. For precise sort, use the rate as 0 Operator: scale(x, scale=1, longscale=1, shortscale=1) Description: Scales input to booksize. We can also scale the long positions and short positions to separate scales by mentioning additional parameters to the operator Operator: winsorize(x, std=4) Description: Winsorizes x to make sure that all values in x are between the lower and upper limits, which are specified as multiple of std. Operator: zscore(x) Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean Operator: vec_avg(x) Description: Taking mean of the vector field x Operator: vec_sum(x) Description: Sum of vector field x Operator: bucket(rank(x), range="0, 1, 0.1" or buckets = "2,5,6,7,10") Description: Convert float values into indexes for user-specified buckets. Bucket is useful for creating group values, which can be passed to GROUP as input Operator: trade_when(x, y, z) Description: Used in order to change Alpha values only under a specified condition and to hold Alpha values in other cases. It also allows to close Alpha positions (assign NaN values) under a specified condition Operator: group_backfill(x, group, d, std = 4.0) Description: If a certain value for a certain date and instrument is NaN, from the set of same group instruments, calculate winsorized mean of all non-NaN values over last d days Operator: group_mean(x, weight, group) Description: All elements in group equals to the mean Operator: group_neutralize(x, group) Description: Neutralizes Alpha against groups. These groups can be subindustry, industry, sector, country or a constant Operator: group_rank(x, group) Description: Each elements in a group is assigned the corresponding rank in this group Operator: group_scale(x, group) Description: Normalizes the values in a group to be between 0 and 1. (x - groupmin) / (groupmax - groupmin) Operator: group_zscore(x, group) Description: Calculates group Z-score - numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean. zscore = (data - mean) / stddev of x for each instrument within its group. ========================= 操作符结束 ======================================= ========================= 数据字段开始 =======================================注意: DataField: 后面的是数据字段, DataFieldDescription: 此字段后面的是数据字段对应的描述或使用说明, DataFieldDescription字段后面的内容是使用说明, 不是数据字段 DataField: forward_price_10 DataFieldDescription: Forward price at 10 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: option_breakeven_360 DataFieldDescription: Price at which a stock's options with expiration 360 days in the future break even based on its recent bid/ask mean. DataField: call_breakeven_150 DataFieldDescription: Price at which a stock's call options with expiration 150 days in the future break even based on its recent bid/ask mean. DataField: put_breakeven_30 DataFieldDescription: Price at which a stock's put options with expiration 30 days in the future break even based on its recent bid/ask mean. DataField: option_breakeven_150 DataFieldDescription: Price at which a stock's options with expiration 150 days in the future break even based on its recent bid/ask mean. DataField: pcr_oi_60 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 60 days in the future. DataField: pcr_vol_30 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 30 days in the future. DataField: pcr_oi_150 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 150 days in the future. DataField: pcr_oi_720 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 720 days in the future. DataField: pcr_vol_150 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 150 days in the future. DataField: pcr_vol_10 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 10 days in the future. DataField: option_breakeven_120 DataFieldDescription: Price at which a stock's options with expiration 120 days in the future break even based on its recent bid/ask mean. DataField: option_breakeven_90 DataFieldDescription: Price at which a stock's options with expiration 90 days in the future break even based on its recent bid/ask mean. DataField: option_breakeven_10 DataFieldDescription: Price at which a stock's options with expiration 10 days in the future break even based on its recent bid/ask mean. DataField: put_breakeven_90 DataFieldDescription: Price at which a stock's put options with expiration 90 days in the future break even based on its recent bid/ask mean. DataField: pcr_oi_1080 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 1080 days in the future. DataField: put_breakeven_1080 DataFieldDescription: Price at which a stock's put options with expiration 1080 days in the future break even based on its recent bid/ask mean. DataField: pcr_vol_720 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 720 days in the future. DataField: call_breakeven_360 DataFieldDescription: Price at which a stock's call options with expiration 360 days in the future break even based on its recent bid/ask mean. DataField: put_breakeven_20 DataFieldDescription: Price at which a stock's put options with expiration 20 days in the future break even based on its recent bid/ask mean. DataField: forward_price_150 DataFieldDescription: Forward price at 150 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: pcr_vol_180 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 180 days in the future. DataField: forward_price_1080 DataFieldDescription: Forward price at 1080 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: pcr_oi_360 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 360 days in the future. DataField: call_breakeven_1080 DataFieldDescription: Price at which a stock's call options with expiration 1080 days in the future break even based on its recent bid/ask mean. DataField: pcr_vol_120 DataFieldDescription: Ratio of put volume to call volume on a stock's options with expiration 120 days in the future. DataField: forward_price_720 DataFieldDescription: Forward price at 720 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: pcr_oi_10 DataFieldDescription: Ratio of put open interest to call open interest on a stock's options with expiration 10 days in the future. DataField: forward_price_20 DataFieldDescription: Forward price at 20 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put. DataField: pcr_vol_all DataFieldDescription: Ratio of put volume to call volume for all maturities on stock's options. DataField: fnd6_rea DataFieldDescription: Retained Earnings - Restatement DataField: fnd6_newa2v1300_ppegt DataFieldDescription: Property, Plant and Equipment - Total (Gross) DataField: fnd6_newqv1300_mibtq DataFieldDescription: Noncontrolling Interests - Total - Balance Sheet - Quarterly DataField: ebit DataFieldDescription: Earnings Before Interest and Taxes DataField: fnd6_newqeventv110_ppegtq DataFieldDescription: Property, Plant and Equipment - Total (Gross) - Quarterly DataField: fnd6_newqeventv110_gdwlipq DataFieldDescription: Impairment of Goodwill Pretax DataField: fnd6_newqeventv110_spceepsq DataFieldDescription: S&P Core Earnings EPS Basic DataField: fnd6_newqeventv110_glcedq DataFieldDescription: Gain/Loss on Sale (Core Earnings Adjusted) Diluted EPS DataField: fnd6_newqeventv110_spceeps12 DataFieldDescription: S&P Core Earnings EPS Basic 12MM DataField: fnd6_txdfed DataFieldDescription: Deferred Taxes - Federal DataField: fnd6_fatb DataFieldDescription: Plant, Property and Equipment at Cost - Buildings DataField: fnd6_newa1v1300_dp DataFieldDescription: Depreciation and Amortization DataField: fnd6_newa2v1300_prsho DataFieldDescription: Redeem Pfd Shares Outs (000) DataField: fnd6_newqv1300_aol2q DataFieldDescription: Assets Level 2 (Observable) DataField: fnd6_mfma1_dpc DataFieldDescription: Depreciation and Amortization (Cash Flow) DataField: fnd6_ptis DataFieldDescription: Pretax Income DataField: fnd6_cptnewqv1300_ceqq DataFieldDescription: Common/Ordinary Equity - Total DataField: fnd6_newqv1300_cogsq DataFieldDescription: Cost of Goods Sold DataField: fnd6_newa1v1300_dltt DataFieldDescription: Long-Term Debt - Total DataField: fnd6_newqv1300_invrmq DataFieldDescription: Inventory - Raw Materials DataField: fnd6_newqeventv110_pncq DataFieldDescription: Core Pension Adjustment DataField: fnd6_txtubtxtr DataFieldDescription: Impact on Effective Tax Rate DataField: fnd6_newa1v1300_dcom DataFieldDescription: Deferred Compensation DataField: fnd6_newa1v1300_ebit DataFieldDescription: Earnings Before Interest and Taxes DataField: fnd6_dd5 DataFieldDescription: Debt Due in 5th Year DataField: fnd6_newqv1300_cshfdq DataFieldDescription: Common Shares for Diluted EPS DataField: fnd6_newa1v1300_dv DataFieldDescription: Cash Dividends (Cash Flow) DataField: cash DataFieldDescription: Cash DataField: fnd6_newqeventv110_seteps12 DataFieldDescription: Settlement (Litigation/Insurance) Basic EPS Effect 12MM DataField: fnd6_mfma2_opeps DataFieldDescription: Earnings Per Share from Operations DataField: scl12_alltype_buzzvec DataFieldDescription: sentiment volume DataField: scl12_alltype_sentvec DataFieldDescription: sentiment DataField: scl12_alltype_typevec DataFieldDescription: instrument type index DataField: scl12_buzz DataFieldDescription: relative sentiment volume DataField: scl12_buzz_fast_d1 DataFieldDescription: relative sentiment volume DataField: scl12_buzzvec DataFieldDescription: sentiment volume DataField: scl12_sentiment DataFieldDescription: sentiment DataField: scl12_sentiment_fast_d1 DataFieldDescription: sentiment DataField: scl12_sentvec DataFieldDescription: sentiment DataField: scl12_typevec DataFieldDescription: instrument type index DataField: snt_buzz DataFieldDescription: negative relative sentiment volume, fill nan with 0 DataField: snt_buzz_bfl DataFieldDescription: negative relative sentiment volume, fill nan with 1 DataField: snt_buzz_bfl_fast_d1 DataFieldDescription: negative relative sentiment volume, fill nan with 1 DataField: snt_buzz_fast_d1 DataFieldDescription: negative relative sentiment volume, fill nan with 0 DataField: snt_buzz_ret DataFieldDescription: negative return of relative sentiment volume DataField: snt_buzz_ret_fast_d1 DataFieldDescription: negative return of relative sentiment volume DataField: snt_value DataFieldDescription: negative sentiment, fill nan with 0 DataField: snt_value_fast_d1 DataFieldDescription: negative sentiment, fill nan with 0 DataField: analyst_revision_rank_derivative DataFieldDescription: Change in ranking for analyst revisions and momentum compared to previous period. DataField: cashflow_efficiency_rank_derivative DataFieldDescription: Change in ranking for cash flow generation and profitability compared to previous period. DataField: composite_factor_score_derivative DataFieldDescription: Change in overall composite factor score from the prior period. DataField: earnings_certainty_rank_derivative DataFieldDescription: Change in ranking for earnings sustainability and certainty compared to previous period. DataField: fscore_bfl_growth DataFieldDescription: The purpose of this metric is to qualify the expected MT growth potential of the stock. DataField: fscore_bfl_momentum DataFieldDescription: The purpose of this metric is to identify stocks which are currently undergoing either up or downward analyst revisions. DataField: fscore_bfl_profitability DataFieldDescription: The purpose of this metric is to rank stock based on their ability to generate cash flows. DataField: fscore_bfl_quality DataFieldDescription: The purpose of this metric is to measure both the sustainability and certainty of earnings. DataField: fscore_bfl_surface DataFieldDescription: The static score. An index between 0 & 100 is applied for each stock and each composite factor - The first ranking is a pentagon surface-based score. The larger the surface, the higher the rank. DataField: fscore_bfl_surface_accel DataFieldDescription: The derivative score. In a second step, we calculate the derivative of this score (ie: Is the surface of the pentagon increasing or decreasing from the previous month?). DataField: fscore_bfl_total DataFieldDescription: The final score M-Score is a weighted average of both the Pentagon surface score and the Pentagon acceleration score. DataField: fscore_bfl_value DataFieldDescription: The purpose of this metric is to see if the stock is under or overpriced given several well known valuation standards. DataField: fscore_growth DataFieldDescription: The purpose of this metric is to qualify the expected MT growth potential of the stock. DataField: fscore_momentum DataFieldDescription: The purpose of this metric is to identify stocks which are currently undergoing either up or downward analyst revisions. DataField: fscore_profitability DataFieldDescription: The purpose of this metric is to rank stock based on their ability to generate cash flows. DataField: fscore_quality DataFieldDescription: The purpose of this metric is to measure both the sustainability and certainty of earnings. DataField: fscore_surface DataFieldDescription: The static score. An index between 0 & 100 is applied for each stock and each composite factor - The first ranking is a pentagon surface-based score. The larger the surface, the higher the rank. DataField: fscore_surface_accel DataFieldDescription: The derivative score. In a second step, we calculate the derivative of this score (ie: Is the surface of the pentagon increasing or decreasing from the previous month?). DataField: fscore_total DataFieldDescription: The final score M-Score is a weighted average of both the Pentagon surface score and the Pentagon acceleration score. DataField: fscore_value DataFieldDescription: The purpose of this metric is to see if the stock is under or overpriced given several well known valuation standards. DataField: growth_potential_rank_derivative DataFieldDescription: Change in ranking for medium-term growth potential compared to previous period. DataField: multi_factor_acceleration_score_derivative DataFieldDescription: Change in the acceleration of multi-factor score compared to previous period. DataField: multi_factor_static_score_derivative DataFieldDescription: Change in static multi-factor score compared to previous period. DataField: relative_valuation_rank_derivative DataFieldDescription: Change in ranking for valuation metrics compared to previous period. DataField: snt_social_value DataFieldDescription: Z score of sentiment DataField: snt_social_volume DataFieldDescription: Normalized tweet volume DataField: beta_last_30_days_spy DataFieldDescription: Beta to SPY in 30 Days DataField: beta_last_360_days_spy DataFieldDescription: Beta to SPY in 360 Days DataField: beta_last_60_days_spy DataFieldDescription: Beta to SPY in 60 Days DataField: beta_last_90_days_spy DataFieldDescription: Beta to SPY in 90 Days DataField: correlation_last_30_days_spy DataFieldDescription: Correlation to SPY in 30 Days DataField: correlation_last_360_days_spy DataFieldDescription: Correlation to SPY in 360 Days DataField: correlation_last_60_days_spy DataFieldDescription: Correlation to SPY in 60 Days DataField: correlation_last_90_days_spy DataFieldDescription: Correlation to SPY in 90 Days DataField: systematic_risk_last_30_days DataFieldDescription: Systematic Risk Last 30 Days DataField: systematic_risk_last_360_days DataFieldDescription: Systematic Risk Last 360 Days DataField: systematic_risk_last_60_days DataFieldDescription: Systematic Risk Last 60 Days DataField: systematic_risk_last_90_days DataFieldDescription: Systematic Risk Last 90 Days DataField: unsystematic_risk_last_30_days DataFieldDescription: Unsystematic Risk Last 30 Days - Relative to SPY DataField: unsystematic_risk_last_360_days DataFieldDescription: Unsystematic Risk Last 360 Days - Relative to SPY DataField: unsystematic_risk_last_60_days DataFieldDescription: Unsystematic Risk Last 60 Days - Relative to SPY DataField: unsystematic_risk_last_90_days DataFieldDescription: Unsystematic Risk Last 90 Days - Relative to SPY DataField: eps_adjusted_min_guidance_value DataFieldDescription: The minimum guidance value for adjusted earnings per share excluding extraordinary items and stock option expenses on an annual basis. DataField: anl4_fsguidanceafv4_minguidance DataFieldDescription: Min guidance value DataField: anl4_afv4_eps_high DataFieldDescription: Earnings per share - The highest estimation DataField: anl4_basicdetailqfv110_prevval DataFieldDescription: The previous estimation of financial item DataField: anl4_basicconltv110_high DataFieldDescription: The highest estimation DataField: dividend_previous_estimate_value DataFieldDescription: The previous estimation of dividend DataField: anl4_bac1conafv110_item DataFieldDescription: Financial item DataField: anl4_fsguidanceafv4_maxguidance DataFieldDescription: Maximum guidance value DataField: anl4_eaz2lafv110_prevval DataFieldDescription: The previous estimation of financial item DataField: anl4_fsdetailltv4v104_item DataFieldDescription: Financial item DataField: selling_general_admin_expense_reported_value DataFieldDescription: Selling, General & Administrative Expense value DataField: max_free_cashflow_guidance DataFieldDescription: The maximum guidance value for Free Cash Flow. DataField: anl4_cfo_value DataFieldDescription: Cash Flow From Operations - announced financial value DataField: anl4_fsdtlestmtbscv104_item DataFieldDescription: Financial item DataField: min_total_goodwill_guidance DataFieldDescription: Total Goodwill - The lowest guidance value DataField: anl4_qfd1_az_wol_spfc DataFieldDescription: Cash Flow Per Share - The lowest estimation DataField: eps_reported_min_guidance_qtr DataFieldDescription: Reported Earnings Per Share - Minimum guidance value DataField: anl4_gric_value DataFieldDescription: Gross income- announced financial value DataField: anl4_detailltv4_est DataFieldDescription: Long term estimation value DataField: max_pretax_profit_guidance DataFieldDescription: The maximum guidance value for Pretax income on an annual basis. DataField: anl4_fsguidancebasicqfv4_item DataFieldDescription: Financial item DataField: anl4_afv4_div_std DataFieldDescription: Dividend per share - standard deviation of estimations DataField: cashflow_per_share_median_value DataFieldDescription: Cash Flow Per Share - Median value among forecasts DataField: anl4_dei3lafv110_item DataFieldDescription: Financial item DataField: anl4_ady_high DataFieldDescription: The highest estimation DataField: anl4_epsa_flag DataFieldDescription: Earnings per share adjusted by excluding extraordinary items and stock option expenses - forecast type (revision/new/...) DataField: max_share_buyback_guidance DataFieldDescription: Maximum guidance value for Shares Basic - Annual DataField: anl4_netdebt_flag DataFieldDescription: Net debt - forecast type (revision/new/...) DataField: anl4_qfd1_az_cfps_median DataFieldDescription: Cash Flow Per Share - Median value among forecasts DataField: anl4_qfv4_minguidance DataFieldDescription: Min guidance value DataField: rel_ret_comp DataFieldDescription: Averaged one-day return of the competing companies DataField: pv13_hierarchy_min2_focused_pureplay_3000_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min40_3000_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min54_3000_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min2_focused_pureplay_sector DataFieldDescription: grouping fields DataField: pv13_hierarchys32_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min51_f1_513_sector DataFieldDescription: grouping fields DataField: pv13_3l_scibr DataFieldDescription: grouping fields DataField: pv13_hierarchy_min52_2k_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min10_top3000_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min52_sector DataFieldDescription: grouping fields DataField: pv13_2l_scibr DataFieldDescription: grouping fields DataField: pv13_hierarchy_min25_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min5_1000_513_sector DataFieldDescription: grouping fields DataField: pv13_revere_company_total DataFieldDescription: Total number of companies in the sector DataField: pv13_rha2_min2_513_sector DataFieldDescription: grouping fields DataField: pv13_revere_term_sector_total DataFieldDescription: Number of terminal sectors for the company DataField: pv13_hierarchy23_513_sector DataFieldDescription: grouping fields DataField: pv13_custretsig_retsig DataFieldDescription: Sign of customer return DataField: pv13_hierarchy_min20_sector DataFieldDescription: grouping fields DataField: pv13_revere_term DataFieldDescription: Indicates when a sector is the terminal sector (i.e., no sub-sectors) DataField: pv13_hierarchy_min100_corr21_sector DataFieldDescription: grouping fields DataField: rel_ret_all DataFieldDescription: Averaged one-day return of the companies whose product overlapped with the instrument DataField: pv13_h_min2_focused_pureplay_3000_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_f4_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min2_focused_pureplay_513_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min30_3000_513_sector DataFieldDescription: grouping fields DataField: pv13_rha2_min5_513_sector DataFieldDescription: grouping fields DataField: pv13_h_min2_3000_sector DataFieldDescription: grouping fields DataField: pv13_hierarchy_min51_f4_513_sector DataFieldDescription: grouping fields DataField: implied_volatility_mean_skew_720 DataFieldDescription: At-the-money option-implied volatility mean skew for 720 days DataField: implied_volatility_mean_skew_20 DataFieldDescription: At-the-money option-implied volatility mean skew for 20 days DataField: implied_volatility_mean_720 DataFieldDescription: At-the-money option-implied volatility mean for 720 days DataField: implied_volatility_call_1080 DataFieldDescription: At-the-money option-implied volatility for call option for 1080 days DataField: implied_volatility_call_30 DataFieldDescription: At-the-money option-implied volatility for call Option for 30 days DataField: implied_volatility_call_10 DataFieldDescription: At-the-money option-implied volatility for call Option for 10 days DataField: implied_volatility_call_720 DataFieldDescription: At-the-money option-implied volatility for call Option for 720 days DataField: parkinson_volatility_120 DataFieldDescription: Parkinson model's historical volatility over 120 days DataField: implied_volatility_put_120 DataFieldDescription: At-the-money option-implied volatility for Put Option for 120 days DataField: historical_volatility_20 DataFieldDescription: Close-to-close Historical volatility over 20 days DataField: parkinson_volatility_60 DataFieldDescription: Parkinson model's historical volatility over 60 days DataField: implied_volatility_call_150 DataFieldDescription: At-the-money option-implied volatility for call Option for 150 days DataField: implied_volatility_put_270 DataFieldDescription: At-the-money option-implied volatility for Put Option for 270 days DataField: implied_volatility_mean_120 DataFieldDescription: At-the-money option-implied volatility mean for 120 days DataField: implied_volatility_mean_10 DataFieldDescription: At-the-money option-implied volatility mean for 10 days DataField: implied_volatility_put_90 DataFieldDescription: At-the-money option-implied volatility for Put Option for 90 days DataField: implied_volatility_mean_270 DataFieldDescription: At-the-money option-implied volatility mean for 270 days DataField: implied_volatility_mean_skew_1080 DataFieldDescription: At-the-money option-implied volatility mean skew for 3 years DataField: parkinson_volatility_30 DataFieldDescription: Parkinson model's historical volatility over 30 days DataField: implied_volatility_call_120 DataFieldDescription: At-the-money option-implied volatility for call Option for 120 days DataField: historical_volatility_150 DataFieldDescription: Close-to-close Historical volatility over 150 days DataField: implied_volatility_mean_skew_120 DataFieldDescription: At-the-money option-implied volatility mean skew for 120 days DataField: parkinson_volatility_10 DataFieldDescription: Parkinson model's historical volatility over 2 weeks DataField: implied_volatility_mean_skew_150 DataFieldDescription: At-the-money option-implied volatility mean skew for 150 days DataField: parkinson_volatility_90 DataFieldDescription: Parkinson model's historical volatility over 90 days DataField: implied_volatility_mean_skew_360 DataFieldDescription: At-the-money option-implied volatility mean skew for 360 days DataField: historical_volatility_180 DataFieldDescription: Close-to-close Historical volatility over 180 days DataField: implied_volatility_call_180 DataFieldDescription: At-the-money option-implied volatility for call Option for 180 days DataField: implied_volatility_put_360 DataFieldDescription: At-the-money option-implied volatility for Put Option for 360 days DataField: implied_volatility_mean_360 DataFieldDescription: At-the-money option-implied volatility mean for 360 days DataField: news_indx_perf DataFieldDescription: ((EODClose - TONLast) / TONLast) - ((SPYClose - SPYLast) / SPYLast) DataField: nws12_afterhsz_3p DataFieldDescription: The minimum of L or S above for 3-minute bucket DataField: news_prev_day_ret DataFieldDescription: Percent change between the previous day's open and close DataField: nws12_mainz_01s DataFieldDescription: Number of minutes that elapsed before price went down 10 percentage points DataField: nws12_prez_57s DataFieldDescription: Number of minutes that elapsed before price went down 7.5 percentage points DataField: nws12_afterhsz_120_min DataFieldDescription: The percent change in price in the first 120 minutes following the news release DataField: nws12_afterhsz_41rta DataFieldDescription: 14-day Average True Range DataField: nws12_afterhsz_mov_vol DataFieldDescription: 30-day moving average session volume DataField: nws12_allz_newssess DataFieldDescription: Index of session in which the news was reported DataField: nws12_mainz_2l DataFieldDescription: Number of minutes that elapsed before price went up 2 percentage points DataField: news_eps_actual DataFieldDescription: The actual Earnings Per Share value that was conveyed by the news release DataField: news_mins_3_chg DataFieldDescription: The minimum of L or S above for 3-minute bucket DataField: news_mins_7_5_pct_up DataFieldDescription: Number of minutes that elapsed before price went up 7.5 percentage points DataField: nws12_prez_maxdnamt DataFieldDescription: The price at the time of the news minus the after the news low DataField: nws12_afterhsz_maxdnamt DataFieldDescription: The price at the time of the news minus the after the news low DataField: nws12_afterhsz_02l DataFieldDescription: Number of minutes that elapsed before price went up 20 percentage points DataField: nws12_prez_dayopen DataFieldDescription: Price at the session open DataField: news_mins_5_chg DataFieldDescription: The minimum of L or S above for 5-minute bucket DataField: nws12_mainz_30_min DataFieldDescription: The percent change in price in the first 30 minutes following the news release DataField: nws12_mainz_peratio DataFieldDescription: Reported price-to-earnings ratio for the calendar day of the session DataField: news_pct_10min DataFieldDescription: The percent change in price in the first 10 minutes following the news release DataField: news_mins_5_pct_up DataFieldDescription: Number of minutes that elapsed before price went up 5 percentage points DataField: nws12_mainz_newrecord DataFieldDescription: Tracks whether the news is first instance or a duplicate DataField: nws12_prez_eodlow DataFieldDescription: Lowest price reached between the time of news and the end of the session. DataField: nws12_mainz_prevday DataFieldDescription: Percent change between the previous day's open and close DataField: nws12_prez_02p DataFieldDescription: The minimum of L or S above for 20-minute bucket DataField: nws12_afterhsz_div_y DataFieldDescription: Annual yield DataField: nws12_afterhsz_lowexcstddev DataFieldDescription: (TONLast - EODLow) / StdDev, where StdDev is one standard deviation for the close price for 30 calendar days DataField: nws12_afterhsz_1s DataFieldDescription: Number of minutes that elapsed before price went down 1 percentage point DataField: news_mins_4_chg DataFieldDescription: The minimum of L or S above for 4-minute bucket DataField: top1000 DataFieldDescription: 20140630 DataField: top200 DataFieldDescription: 20140630 DataField: top3000 DataFieldDescription: 20140630 DataField: top500 DataFieldDescription: 20140630 DataField: topsp500 DataFieldDescription: 20140630 DataField: rp_nip_assets DataFieldDescription: News impact projection of assets news DataField: rp_ess_technical DataFieldDescription: Event sentiment score based on technical analysis DataField: nws18_event_relevance DataFieldDescription: Relevance of the event to the story DataField: rp_ess_insider DataFieldDescription: Event sentiment score of insider trading news DataField: rp_nip_society DataFieldDescription: News impact projection of society-related news DataField: nws18_bam DataFieldDescription: News sentiment specializing in mergers and acquisitions DataField: rp_nip_marketing DataFieldDescription: News impact projection of marketing news DataField: nws18_sse DataFieldDescription: Sentiment of phrases impacting the company DataField: rp_nip_product DataFieldDescription: News impact projection of product and service-related news DataField: nws18_event_similarity_days DataFieldDescription: Days since a similar event was detected DataField: nws18_relevance DataFieldDescription: Relevance of news to the company DataField: rp_ess_credit DataFieldDescription: Event sentiment score of credit news DataField: nws18_qep DataFieldDescription: News sentiment based on positive and negative words on global equity DataField: nws18_ssc DataFieldDescription: Sentiment of the news calculated using multiple techniques DataField: rp_ess_earnings DataFieldDescription: Event sentiment score of earnings news DataField: rp_ess_equity DataFieldDescription: Event sentiment score of equity action news DataField: rp_ess_society DataFieldDescription: Event sentiment score of society-related news DataField: rp_nip_inverstor DataFieldDescription: News impact projection of investor relations news DataField: rp_ess_price DataFieldDescription: Event sentiment score of stock price news DataField: rp_ess_ptg DataFieldDescription: Event sentiment score of price target news DataField: rp_css_partner DataFieldDescription: Composite sentiment score of partnership news DataField: rp_nip_partner DataFieldDescription: News impact projection of partnership news DataField: rp_nip_credit DataFieldDescription: News impact projection of credit news DataField: rp_css_earnings DataFieldDescription: Composite sentiment score of earnings news DataField: rp_ess_dividends DataFieldDescription: Event sentiment score of dividends news DataField: nws18_acb DataFieldDescription: News sentiment specializing in corporate action announcements DataField: rp_nip_equity DataFieldDescription: News impact projection of equity action news DataField: nws18_nip DataFieldDescription: Degree of impact of the news DataField: rp_nip_labor DataFieldDescription: News impact projection of labor issues news DataField: rp_css_business DataFieldDescription: Composite sentiment score of business-related news DataField: fn_avg_diluted_sharesout_adj_a DataFieldDescription: The sum of dilutive potential common shares or units used in the calculation of the diluted per-share or per-unit computation. DataField: fn_comp_non_opt_forfeited_q DataFieldDescription: The number of equity-based payment instruments, excluding stock (or unit) options, that were forfeited during the reporting period. DataField: fn_proceeds_from_stock_options_exercised_q DataFieldDescription: The cash inflow associated with the amount received from holders exercising their stock options. This item inherently excludes any excess tax benefit, which the entity may have realized and reported separately. DataField: fn_profit_loss_q DataFieldDescription: The consolidated profit or loss for the period, net of income taxes, including the portion attributable to the noncontrolling interest. DataField: fnd2_a_sbcpnargmsawpfipwerpr DataFieldDescription: Weighted average price of options that were either forfeited or expired. DataField: fnd2_a_sbcpnargmpmwggil DataFieldDescription: Amount by which the current fair value of the underlying stock exceeds the exercise price of fully vested and expected to vest options outstanding. DataField: fn_finite_lived_intangible_assets_net_q DataFieldDescription: Finite Lived Intangible Assets, Net DataField: fnd2_dbplanepdfbnfpnext12m DataFieldDescription: Amount of benefits from a defined benefit plan expected to be paid in the next fiscal year following the latest fiscal year. Excludes interim and annual periods when interim periods are reported on a rolling approach, from latest balance sheet date. DataField: fnd2_a_sbcpnargmsptawervl DataFieldDescription: Amount of accumulated difference between fair value of underlying shares on dates of exercise and exercise price on options exercised (or share units converted) into shares. DataField: fn_finite_lived_intangible_assets_gross_q DataFieldDescription: Amount before amortization of assets, excluding financial assets and goodwill, lacking physical substance with a finite life. DataField: fn_comp_non_opt_vested_q DataFieldDescription: The number of equity-based payment instruments, excluding stock (or unit) options, that vested during the reporting period. DataField: fnd2_dfdtxastxdfdexprssaccrs DataFieldDescription: Amount before allocation of valuation allowances of deferred tax asset attributable to deductible temporary differences from reserves and accruals. DataField: fnd2_a_stkrpeprogramardamt DataFieldDescription: Amount of a stock repurchase plan authorized by an entity's Board of Directors. DataField: fnd2_a_curritxexp DataFieldDescription: Income Tax Expense, Current DataField: fn_comp_non_opt_nonvested_number_a DataFieldDescription: The number of non-vested equity-based payment instruments, excluding stock (or unit) options, that validly exist and are outstanding as of the balance sheet date. DataField: fn_comp_options_out_number_q DataFieldDescription: Number of options outstanding, including both vested and non-vested options. DataField: fnd2_a_flintasamt1expyfour DataFieldDescription: Amount of amortization expense for assets, excluding financial assets and goodwill, lacking physical substance with a finite life expected to be recognized during the 4th fiscal year following the latest fiscal year. Excludes interim and annual periods when interim periods are reported on a rolling approach, from latest balance sheet date. DataField: fnd2_q_atdlsecexfcepsastkos DataFieldDescription: Antidilutive Shares Excluded From Earnings Per Share Amount, Stock Options DataField: fn_accum_depr_depletion_and_amortization_ppne_a DataFieldDescription: Amount of accumulated depreciation, depletion and amortization for physical assets used in the normal conduct of business to produce goods and services. DataField: fn_accum_depr_depletion_and_amortization_ppne_q DataFieldDescription: Amount of accumulated depreciation, depletion and amortization for physical assets used in the normal conduct of business to produce goods and services. DataField: fn_finite_lived_intangible_assets_gross_a DataFieldDescription: Amount before amortization of assets, excluding financial assets and goodwill, lacking physical substance with a finite life. DataField: fnd2_a_gwllimrml DataFieldDescription: Amount of loss from the write-down of an asset representing the future economic benefits arising from other assets acquired in a business combination that are not individually identified and separately recognized. DataField: fn_repayments_of_lt_debt_a DataFieldDescription: The cash outflow for debt initially having maturity due after 1 year or beyond the normal operating cycle, if longer. DataField: fn_comp_not_rec_a DataFieldDescription: Unrecognized cost of unvested share-based compensation awards. DataField: fn_income_taxes_paid_q DataFieldDescription: The amount of cash paid during the current period to foreign, federal, state, and local authorities as taxes on income. DataField: fn_comp_options_out_intrinsic_value_a DataFieldDescription: The intrinsic value of a stock option is the amount by which the market value of the underlying stock exceeds the exercise price of the option. DataField: fn_income_tax_expense_q DataFieldDescription: Income Tax Expense (Benefit) DataField: fnd2_a_atdlsecexfcepsastkos DataFieldDescription: Antidilutive Shares Excluded From Earnings Per Share Amount, Stock Options DataField: fnd2_a_flintasacmamtzcsrld DataFieldDescription: Finite Lived Intangible Assets Accumulated Amortization, Customer Related DataField: fnd2_a_ltrmdmrepoplinnext12m DataFieldDescription: Amount of long-term debt payable, sinking fund requirements, and other securities issued that are redeemable by holder at fixed or determinable prices and dates maturing in the next fiscal year following the latest fiscal year. Excludes interim and annual periods when interim periods are reported on a rolling approach, from latest balance sheet date. DataField: adv20 DataFieldDescription: Average daily volume in past 20 days DataField: cap DataFieldDescription: Daily market capitalization (in millions) DataField: close DataFieldDescription: Daily close price DataField: country DataFieldDescription: Country grouping DataField: currency DataFieldDescription: Currency DataField: cusip DataFieldDescription: CUSIP Value DataField: dividend DataFieldDescription: Dividend DataField: exchange DataFieldDescription: Exchange grouping DataField: high DataFieldDescription: Daily high price DataField: industry DataFieldDescription: Industry grouping DataField: isin DataFieldDescription: ISIN Value DataField: low DataFieldDescription: Daily low price DataField: market DataFieldDescription: Market grouping DataField: open DataFieldDescription: Daily open price DataField: returns DataFieldDescription: Daily returns DataField: sector DataFieldDescription: Sector grouping DataField: sedol DataFieldDescription: Sedol DataField: sharesout DataFieldDescription: Daily outstanding shares (in millions) DataField: split DataFieldDescription: Stock split ratio DataField: subindustry DataFieldDescription: Subindustry grouping DataField: ticker DataFieldDescription: Ticker DataField: volume DataFieldDescription: Daily volume DataField: vwap DataFieldDescription: Daily volume weighted average price ========================= 数据字段结束 =======================================