# !/usr/bin/env python3 # -*- coding: utf-8 -*- """ 表达式验证器 - 使用抽象语法树验证字符串表达式格式是否正确 本模块实现了一个能够检测字符串表达式格式是否正确的系统,基于PLY(Python Lex-Yacc) 构建词法分析器和语法分析器,识别表达式中的操作符、函数和字段,并验证其格式正确性。 """ import re import sys import json import os from typing import List, Dict, Any, Optional, Tuple # 尝试导入PLY库,如果不存在则提供安装提示 try: import ply.lex as lex import ply.yacc as yacc except ImportError: print("错误: 需要安装PLY库。请运行 'pip install ply' 来安装。") sys.exit(1) # 1. 定义支持的操作符和函数 supported_functions = { # Group 类别函数 'group_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_mean': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, 'group_median': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_rank': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_vector_proj': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'category']}, 'group_normalize': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'category', 'expression', 'expression', 'expression']}, 'group_extra': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'category']}, 'group_backfill': {'min_args': 3, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'expression'], 'param_names': ['x', 'cat', 'days', 'std']}, 'group_scale': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_count': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_zscore': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_std_dev': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_sum': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_neutralize': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, 'group_multi_regression': {'min_args': 4, 'max_args': 9, 'arg_types': ['expression'] * 9}, 'group_cartesian_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['category', 'category']}, 'combo_a': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, # Transformational 类别函数 'right_tail': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'bucket': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 第二个参数可以是string类型的range参数 'tail': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'expression']}, 'left_tail': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'trade_when': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, 'generate_stats': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # Cross Sectional 类别函数 'winsorize': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression'], 'param_names': ['x', 'std']}, 'rank': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'regression_proj': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'vector_neut': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'regression_neut': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'multi_regression': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # 支持多个自变量 # Time Series 类别函数 'ts_std_dev': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_mean': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_delay': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_corr': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, 'ts_zscore': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_returns': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'mode']}, 'ts_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_backfill': {'min_args': 2, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'string']}, 'days_from_last_change': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'last_diff_value': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_scale': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, 'ts_entropy': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number'], 'param_names': ['x', 'd', 'buckets']}, 'ts_step': {'min_args': 1, 'max_args': 1, 'arg_types': ['number']}, 'ts_sum': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_co_kurtosis': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, 'inst_tvr': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_decay_exp_window': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'factor']}, 'ts_av_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_kurtosis': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_min_max_diff': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, 'ts_arg_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_min_max_cps': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, 'ts_rank': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, 'ts_ir': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_theilsen': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, 'hump_decay': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_weighted_decay': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_quantile': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'string']}, 'ts_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_count_nans': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_covariance': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, 'ts_co_skewness': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, 'ts_min_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_decay_linear': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'boolean']}, 'jump_decay': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'number', 'expression', 'number', 'number'], 'param_names': ['x', 'd', 'stddev', 'sensitivity', 'force']}, 'ts_moment': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'k']}, 'ts_arg_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_regression': {'min_args': 3, 'max_args': 5, 'arg_types': ['expression', 'expression', 'number', 'number', 'number'], 'param_names': ['y', 'x', 'd', 'lag', 'rettype']}, 'ts_skewness': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_max_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'kth_element': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, 'hump': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'hump']}, 'ts_median': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_delta': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_poly_regression': {'min_args': 3, 'max_args': 4, 'arg_types': ['expression', 'expression', 'number', 'number']}, 'ts_target_tvr_decay': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'number'], 'param_names': ['x', 'lambda_min', 'lambda_max', 'target_tvr']}, 'ts_target_tvr_delta_limit': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'expression', 'number', 'number', 'number']}, 'ts_target_tvr_hump': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'number']}, 'ts_delta_limit': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, # Special 类别函数 'inst_pnl': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'self_corr': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'in': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字 'universe_size': {'min_args': 0, 'max_args': 0, 'arg_types': []}, # Missing functions from operators.py 'quantile': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'driver', 'sigma']}, # quantile(x, driver = gaussian, sigma = 1.0) 'normalize': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'boolean', 'number']}, # normalize(x, useStd = false, limit = 0.0) 'zscore': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # zscore(x) # Logical 类别函数 'or': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字 'and': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字 'not': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # 注意:这是关键字 'is_nan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'is_not_nan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'less': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'greater': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'is_finite': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'if_else': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, 'not_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'less_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'greater_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # Vector 类别函数 'vec_kurtosis': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_min': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_count': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_sum': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_skewness': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_max': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_avg': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_range': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_choose': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'nth']}, 'vec_powersum': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'constant']}, 'vec_stddev': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_percentage': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'percentage']}, 'vec_ir': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'vec_norm': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'ts_percentage': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'percentage']}, 'signed_power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, 'ts_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, # Additional functions from test cases 'rank_by_side': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'rate', 'scale']}, 'log_diff': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'nan_mask': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, 'ts_partial_corr': {'min_args': 4, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'number']}, 'ts_triple_corr': {'min_args': 4, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'number']}, 'clamp': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'lower', 'upper']}, 'keep': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number'], 'param_names': ['x', 'condition', 'period']}, 'replace': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'target', 'dest']}, 'filter': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'h', 't']}, 'one_side': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'string'], 'param_names': ['x', 'side']}, 'scale_down': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'constant']}, # Arithmetic 类别函数 'add': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # add(x, y, filter=false) 'multiply': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 99 + ['boolean'], 'param_names': ['x', 'y', 'filter']}, # multiply(x, y, ..., filter=false) 'sign': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'subtract': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # subtract(x, y, filter=false) 'pasteurize': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'log': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'purify': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'arc_tan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'max': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # max(x, y, ...) 'to_nan': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # to_nan(x, value=0, reverse=false) 'abs': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'sigmoid': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'divide': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # divide(x, y) 'min': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # min(x, y, ...) 'tanh': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'nan_out': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'lower', 'upper']}, # nan_out(x, lower=0, upper=0) 'signed_power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # signed_power(x, y) 'inverse': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'round': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'sqrt': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 's_log_1p': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'reverse': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # -x 'power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # power(x, y) 'densify': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, 'floor': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, } # 2. 定义group类型字段 group_fields = { 'sector', 'subindustry', 'industry', 'exchange', 'country', 'market' } # 3. 有效类别集合 valid_categories = group_fields # 4. 字段命名模式 - 只校验字段是不是数字字母下划线组成 field_patterns = [ re.compile(r'^[a-zA-Z0-9_]+$'), # 只允许数字、字母和下划线组成的字段名 ] # 4. 抽象语法树节点类型 class ASTNode: """抽象语法树节点基类""" def __init__(self, node_type: str, children: Optional[List['ASTNode']] = None, value: Optional[Any] = None, line: Optional[int] = None): self.node_type = node_type # 'function', 'operator', 'field', 'number', 'expression' self.children = children or [] self.value = value self.line = line def __str__(self) -> str: return f"ASTNode({self.node_type}, {self.value}, line={self.line})" def __repr__(self) -> str: return self.__str__() class ExpressionValidator: """表达式验证器类""" def __init__(self): """初始化词法分析器和语法分析器""" # 构建词法分析器 self.lexer = lex.lex(module=self, debug=False) # 构建语法分析器 self.parser = yacc.yacc(module=self, debug=False) # 错误信息存储 self.errors = [] # 词法分析器规则 tokens = ('FUNCTION', 'FIELD', 'NUMBER', 'LPAREN', 'RPAREN', 'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'COMMA', 'CATEGORY', 'EQUAL', 'ASSIGN', 'IDENTIFIER', 'STRING', 'GREATER', 'LESS', 'GREATEREQUAL', 'LESSEQUAL', 'NOTEQUAL', 'BOOLEAN') # 忽略空白字符 t_ignore = ' \t\n' # 操作符 - 注意顺序很重要,长的操作符要放在前面 t_PLUS = r'\+' t_MINUS = r'-' t_TIMES = r'\*' t_DIVIDE = r'/' t_LPAREN = r'\(' t_RPAREN = r'\)' t_COMMA = r',' t_EQUAL = r'==' t_NOTEQUAL = r'!=' t_GREATEREQUAL = r'>=' t_LESSEQUAL = r'<=' t_GREATER = r'>' t_LESS = r'<' t_ASSIGN = r'=' # 数字(整数和浮点数) def t_NUMBER(self, t): r'\d+\.?\d*' if '.' in t.value: t.value = float(t.value) else: t.value = int(t.value) return t # 字符串 - 需要放在所有其他标识符规则之前 def t_STRING(self, t): r"'[^']*'|\"[^\"]*\"" # 去除引号 t.value = t.value[1:-1] return t # 函数和字段名 def t_IDENTIFIER(self, t): r'[a-zA-Z_][a-zA-Z0-9_]*' # 检查是否为布尔值 if t.value.lower() in {'true', 'false'}: t.type = 'BOOLEAN' t.value = t.value.lower() # 转换为小写以保持一致性 else: # 查看当前token后面的字符,判断是否为参数名(后面跟着'=') lexpos = t.lexpos next_chars = '' if lexpos + len(t.value) < len(t.lexer.lexdata): # 查看当前token后面的字符,跳过空格 next_pos = lexpos + len(t.value) while next_pos < len(t.lexer.lexdata) and t.lexer.lexdata[next_pos].isspace(): next_pos += 1 if next_pos < len(t.lexer.lexdata): next_chars = t.lexer.lexdata[next_pos:next_pos + 1] # 如果后面跟着'=',则为参数名 if next_chars == '=': t.type = 'IDENTIFIER' # 如果后面跟着'(',则为函数名 elif next_chars == '(': t.type = 'FUNCTION' t.value = t.value.lower() # 转换为小写以保持一致性 # 检查是否为参数名(支持更多参数名) elif t.value in {'std', 'k', 'lambda_min', 'lambda_max', 'target_tvr', 'range', 'buckets', 'lag', 'rettype', 'mode', 'nth', 'constant', 'percentage', 'driver', 'sigma', 'rate', 'scale', 'filter', 'lower', 'upper', 'target', 'dest', 'event', 'sensitivity', 'force', 'h', 't', 'period', 'stddev', 'factor', 'k', 'useStd', 'limit', 'gaussian', 'uniform', 'cauchy'}: t.type = 'IDENTIFIER' # 检查是否为函数名(不区分大小写) elif t.value.lower() in supported_functions: t.type = 'FUNCTION' t.value = t.value.lower() # 转换为小写以保持一致性 # 检查是否为有效类别 elif t.value in valid_categories: t.type = 'CATEGORY' # 检查是否为字段名 elif self._is_valid_field(t.value): t.type = 'FIELD' else: # 其他标识符,保留为IDENTIFIER类型 t.type = 'IDENTIFIER' return t # 行号跟踪 def t_newline(self, t): r'\n+' t.lexer.lineno += len(t.value) # 错误处理 def t_error(self, t): if t: # 检查是否为非法字符 if not re.match(r'[a-zA-Z0-9_\+\-\*/\(\)\,\s=<>!]', t.value[0]): # 这是一个非法字符 self.errors.append(f"非法字符 '{t.value[0]}' (行 {t.lexer.lineno})") else: # 这是一个非法标记 self.errors.append(f"非法标记 '{t.value}' (行 {t.lexer.lineno})") # 跳过这个字符,继续处理 t.lexer.skip(1) else: self.errors.append("词法分析器到达文件末尾") # 语法分析器规则 def p_expression(self, p): """expression : comparison | expression EQUAL comparison | expression NOTEQUAL comparison | expression GREATER comparison | expression LESS comparison | expression GREATEREQUAL comparison | expression LESSEQUAL comparison""" if len(p) == 2: p[0] = p[1] else: p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]}) def p_comparison(self, p): """comparison : term | comparison PLUS term | comparison MINUS term""" if len(p) == 2: p[0] = p[1] else: p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]}) def p_term(self, p): """term : factor | term TIMES factor | term DIVIDE factor""" if len(p) == 2: p[0] = p[1] else: p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]}) def p_factor(self, p): """factor : NUMBER | STRING | FIELD | CATEGORY | IDENTIFIER | BOOLEAN | MINUS factor | LPAREN expression RPAREN | function_call""" if len(p) == 2: # 数字、字符串、字段、类别或标识符 if p.slice[1].type == 'NUMBER': p[0] = ASTNode('number', value=p[1]) elif p.slice[1].type == 'STRING': p[0] = ASTNode('string', value=p[1]) elif p.slice[1].type == 'FIELD': p[0] = ASTNode('field', value=p[1]) elif p.slice[1].type == 'CATEGORY': p[0] = ASTNode('category', value=p[1]) elif p.slice[1].type == 'BOOLEAN': p[0] = ASTNode('boolean', value=p[1]) elif p.slice[1].type == 'IDENTIFIER': p[0] = ASTNode('identifier', value=p[1]) else: p[0] = p[1] elif len(p) == 3: # 一元负号 p[0] = ASTNode('unop', [p[2]], {'op': p[1]}) elif len(p) == 4: # 括号表达式 p[0] = p[2] else: # 函数调用 p[0] = p[1] def p_function_call(self, p): '''function_call : FUNCTION LPAREN args RPAREN''' p[0] = ASTNode('function', p[3], p[1]) def p_args(self, p): '''args : arg_list | empty''' if len(p) == 2 and p[1] is not None: p[0] = p[1] else: p[0] = [] def p_arg_list(self, p): '''arg_list : arg | arg_list COMMA arg''' if len(p) == 2: p[0] = [p[1]] else: p[0] = p[1] + [p[3]] def p_arg(self, p): '''arg : expression | IDENTIFIER ASSIGN expression''' if len(p) == 2: p[0] = {'type': 'positional', 'value': p[1]} else: p[0] = {'type': 'named', 'name': p[1], 'value': p[3]} def p_empty(self, p): '''empty :''' p[0] = None # 语法错误处理 def p_error(self, p): if p: self.errors.append(f"语法错误在位置 {p.lexpos}: 非法标记 '{p.value}'") else: self.errors.append("语法错误: 表达式不完整") def _is_valid_field(self, field_name: str) -> bool: """检查字段名是否符合模式""" for pattern in field_patterns: if pattern.match(field_name): return True return False def validate_function(self, node: ASTNode, is_in_group_arg: bool = False) -> List[str]: """验证函数调用的参数数量和类型""" function_name = node.value args = node.children function_info = supported_functions.get(function_name) if not function_info: return [f"未知函数: {function_name}"] errors = [] # 检查参数数量 if len(args) < function_info['min_args']: errors.append(f"函数 {function_name} 需要至少 {function_info['min_args']} 个参数,但只提供了 {len(args)}") elif len(args) > function_info['max_args']: errors.append(f"函数 {function_name} 最多接受 {function_info['max_args']} 个参数,但提供了 {len(args)}") # 处理参数验证 # 跟踪已使用的位置参数索引 positional_index = 0 # 对于所有函数,支持命名参数 for arg in args: if isinstance(arg, dict): if arg['type'] == 'named': # 命名参数 if 'param_names' in function_info and arg['name'] in function_info['param_names']: # 查找参数在param_names中的索引 param_index = function_info['param_names'].index(arg['name']) if param_index < len(function_info['arg_types']): expected_type = function_info['arg_types'][param_index] arg_errors = self._validate_arg_type(arg['value'], expected_type, param_index, function_name, is_in_group_arg) errors.extend(arg_errors) # 对于winsorize函数,支持std和clip参数 elif function_name == 'winsorize' and arg['name'] in ['std', 'clip']: arg_errors = self._validate_arg_type(arg['value'], 'number', 0, function_name, is_in_group_arg) errors.extend(arg_errors) # 对于bucket函数,支持'range'和'buckets'参数 elif function_name == 'bucket' and arg['name'] in ['range', 'buckets']: # range和buckets参数应该是string类型 arg_errors = self._validate_arg_type(arg['value'], 'string', 1, function_name, is_in_group_arg) errors.extend(arg_errors) else: errors.append(f"函数 {function_name} 不存在参数 '{arg['name']}'") elif arg['type'] == 'positional': # 位置参数(字典形式) # 对于winsorize函数,第二个参数必须是命名参数 if function_name == 'winsorize' and positional_index == 1: errors.append(f"函数 {function_name} 的第二个参数必须使用命名参数 'std='") # 对于ts_moment函数,第三个参数必须是命名参数 elif function_name == 'ts_moment' and positional_index == 2: errors.append(f"函数 {function_name} 的第三个参数必须使用命名参数 'k='") else: # 验证位置参数的类型 if positional_index < len(function_info['arg_types']): expected_type = function_info['arg_types'][positional_index] arg_errors = self._validate_arg_type(arg['value'], expected_type, positional_index, function_name, is_in_group_arg) errors.extend(arg_errors) positional_index += 1 else: # 其他字典类型参数 errors.append(f"参数 {positional_index + 1} 格式错误") positional_index += 1 else: # 位置参数(直接ASTNode形式) # 对于winsorize函数,第二个参数必须是命名参数 if function_name == 'winsorize' and positional_index == 1: errors.append(f"函数 {function_name} 的第二个参数必须使用命名参数 'std='") # 对于ts_moment函数,第三个参数必须是命名参数 elif function_name == 'ts_moment' and positional_index == 2: errors.append(f"函数 {function_name} 的第三个参数必须使用命名参数 'k='") else: # 验证位置参数的类型 if positional_index < len(function_info['arg_types']): expected_type = function_info['arg_types'][positional_index] arg_errors = self._validate_arg_type(arg, expected_type, positional_index, function_name, is_in_group_arg) errors.extend(arg_errors) positional_index += 1 return errors def _validate_arg_type(self, arg: ASTNode, expected_type: str, arg_index: int, function_name: str, is_in_group_arg: bool = False) -> List[str]: """验证参数类型是否符合预期""" errors = [] # 首先检查是否是group类型字段,如果是则只能用于Group类型函数 # 但是如果当前函数是group_xxx或在group函数的参数链中,则允许使用 if arg.node_type == 'category' and arg.value in group_fields: if not (function_name.startswith('group_') or is_in_group_arg): errors.append(f"Group类型字段 '{arg.value}' 只能用于Group类型函数的参数中") # 然后验证参数类型是否符合预期 if expected_type == 'expression': # 表达式可以是任何有效的AST节点 pass elif expected_type == 'number': if arg.node_type != 'number': errors.append(f"参数 {arg_index + 1} 应该是一个数字,但得到 {arg.node_type}") elif expected_type == 'boolean': # 布尔值可以是数字(0/1) if arg.node_type != 'number': errors.append(f"参数 {arg_index + 1} 应该是一个布尔值(0/1),但得到 {arg.node_type}") elif expected_type == 'field': if arg.node_type != 'field' and arg.node_type != 'category': # 允许field或category作为字段参数 errors.append(f"参数 {arg_index + 1} 应该是一个字段,但得到 {arg.node_type}") elif arg.node_type == 'field' and not self._is_valid_field(arg.value): errors.append(f"无效的字段名: {arg.value}") elif expected_type == 'category': if not function_name.startswith('group_'): # 非group函数的category参数必须是category类型且在valid_categories中 if arg.node_type != 'category': errors.append(f"参数 {arg_index + 1} 应该是一个类别,但得到 {arg.node_type}") elif arg.value not in valid_categories: errors.append(f"无效的类别: {arg.value}") # group函数的category参数可以是任何类型(field、category等),不进行类型校验 return errors def validate_ast(self, ast: Optional[ASTNode], is_in_group_arg: bool = False) -> List[str]: """递归验证抽象语法树""" if not ast: return ["无法解析表达式"] errors = [] # 根据节点类型进行验证 if ast.node_type == 'function': # 检查当前函数是否是group函数 is_group_function = ast.value.startswith('group_') # 确定当前是否在group函数的参数链中 current_in_group_arg = is_in_group_arg or is_group_function # 验证函数 function_errors = self.validate_function(ast, current_in_group_arg) errors.extend(function_errors) # 递归验证子节点时使用current_in_group_arg for child in ast.children: if isinstance(child, dict): # 命名参数,验证其值 if 'value' in child and hasattr(child['value'], 'node_type'): child_errors = self.validate_ast(child['value'], current_in_group_arg) errors.extend(child_errors) elif hasattr(child, 'node_type'): child_errors = self.validate_ast(child, current_in_group_arg) errors.extend(child_errors) elif ast.node_type in ['unop', 'binop']: # 对操作符的子节点进行验证 for child in ast.children: if hasattr(child, 'node_type'): child_errors = self.validate_ast(child, is_in_group_arg) errors.extend(child_errors) elif ast.node_type == 'field': # 验证字段名 if not self._is_valid_field(ast.value): errors.append(f"无效的字段名: {ast.value}") else: # 递归验证子节点 for child in ast.children: if isinstance(child, dict): # 命名参数,验证其值 if 'value' in child and hasattr(child['value'], 'node_type'): child_errors = self.validate_ast(child['value'], is_in_group_arg) errors.extend(child_errors) elif hasattr(child, 'node_type'): child_errors = self.validate_ast(child, is_in_group_arg) errors.extend(child_errors) return errors def _process_semicolon_expression(self, expression: str) -> Tuple[bool, str]: """处理带有分号的表达式,将其转换为不带分号的简化形式 Args: expression: 要处理的表达式字符串 Returns: Tuple[bool, str]: (是否成功, 转换后的表达式或错误信息) """ # 检查表达式是否以分号结尾 if expression.strip().endswith(';'): return False, "表达式不能以分号结尾" # 分割表达式为语句列表 statements = [stmt.strip() for stmt in expression.split(';') if stmt.strip()] if not statements: return False, "表达式不能为空" # 存储变量赋值 variables = {} # 处理每个赋值语句(除了最后一个) for i, stmt in enumerate(statements[:-1]): # 检查是否包含赋值符号 if '=' not in stmt: return False, f"第{i + 1}个语句必须是赋值语句(使用=符号)" # 检查是否是比较操作符(==, !=, <=, >=) if any(op in stmt for op in ['==', '!=', '<=', '>=']): # 如果包含比较操作符,需要确认是否有赋值符号 # 使用临时替换法:将比较操作符替换为临时标记,再检查是否还有= temp_stmt = stmt for op in ['==', '!=', '<=', '>=']: temp_stmt = temp_stmt.replace(op, '---') if '=' not in temp_stmt: return False, f"第{i + 1}个语句必须是赋值语句,不能只是比较表达式" # 找到第一个=符号(不是比较操作符的一部分) # 先将比较操作符替换为临时标记,再找= temp_stmt = stmt for op in ['==', '!=', '<=', '>=']: temp_stmt = temp_stmt.replace(op, '---') if '=' not in temp_stmt: return False, f"第{i + 1}个语句必须是赋值语句(使用=符号)" # 找到实际的=位置 equals_pos = temp_stmt.index('=') # 在原始语句中找到对应位置 real_equals_pos = 0 temp_count = 0 for char in stmt: if temp_count == equals_pos: break if char in '!<>': # 检查是否是比较操作符的一部分 if real_equals_pos + 1 < len(stmt) and stmt[real_equals_pos + 1] == '=': # 是比较操作符,跳过两个字符 real_equals_pos += 2 temp_count += 3 # 因为替换成了三个字符的--- else: real_equals_pos += 1 temp_count += 1 else: real_equals_pos += 1 temp_count += 1 # 分割变量名和值 var_name = stmt[:real_equals_pos].strip() var_value = stmt[real_equals_pos + 1:].strip() # 检查变量名是否有效 if not re.match(r'^[a-zA-Z_][a-zA-Z0-9_]*$', var_name): return False, f"第{i + 1}个语句的变量名'{var_name}'无效,只能包含字母、数字和下划线,且不能以数字开头" var_name_lower = var_name.lower() # 变量名不区分大小写 # 检查变量名是否在后续表达式中使用 # 这里不需要,因为后面的表达式会检查 # 检查变量值中使用的变量是否已经定义 # 简单检查:提取所有可能的变量名 used_vars = re.findall(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', var_value) for used_var in used_vars: used_var_lower = used_var.lower() if used_var_lower not in variables: # 检查是否是函数名 if used_var not in supported_functions: # 对于单个字母或简单单词,不自动视为字段名,要求先定义 if len(used_var) <= 2: return False, f"第{i + 1}个语句中使用的变量'{used_var}'未在之前定义" # 对于较长的字段名,仍然允许作为字段名 elif not self._is_valid_field(used_var): return False, f"第{i + 1}个语句中使用的变量'{used_var}'未在之前定义" # 将之前定义的变量替换到当前值中 for existing_var, existing_val in variables.items(): # 使用单词边界匹配,避免替换到其他单词的一部分 var_value = re.sub(rf'\b{existing_var}\b', existing_val, var_value) # 存储变量 variables[var_name_lower] = var_value # 处理最后一个语句(实际的表达式) final_stmt = statements[-1] # 检查最后一个语句是否是赋值语句 if '=' in final_stmt: # 替换比较操作符为临时标记,然后检查是否还有单独的= temp_stmt = final_stmt for op in ['==', '!=', '<=', '>=']: temp_stmt = temp_stmt.replace(op, '---') if '=' in temp_stmt: return False, "最后一个语句不能是赋值语句" # 检查最后一个语句中使用的变量是否已经定义 used_vars = re.findall(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', final_stmt) for used_var in used_vars: used_var_lower = used_var.lower() if used_var_lower not in variables: # 检查是否是函数名 if used_var not in supported_functions: # 在分号表达式中,所有非函数名的标识符都必须是变量,必须在之前定义 return False, f"最后一个语句中使用的变量'{used_var}'未在之前定义" # 将变量替换到最后一个表达式中 final_expr = final_stmt for var_name, var_value in variables.items(): final_expr = re.sub(rf'\b{var_name}\b', var_value, final_expr) return True, final_expr def check_expression(self, expression: str) -> Dict[str, Any]: """ 检查表达式格式是否正确 Args: expression: 要验证的表达式字符串 Returns: 包含验证结果的字典 """ # 重置错误列表 self.errors = [] try: expression = expression.strip() if not expression: return { 'valid': False, 'errors': ['表达式不能为空'], 'tokens': [], 'ast': None } # 处理带有分号的表达式 if ';' in expression: success, result = self._process_semicolon_expression(expression) if not success: return { 'valid': False, 'errors': [result], 'tokens': [], 'ast': None } expression = result # 重置词法分析器的行号 self.lexer.lineno = 1 # 词法分析(用于调试) self.lexer.input(expression) tokens = [] # 调试:打印识别的标记 print(f"\n调试 - 表达式: {expression}") print("识别的标记:") for token in self.lexer: print(f" - 类型: {token.type}, 值: '{token.value}', 位置: {token.lexpos}") tokens.append(token) # 重新设置词法分析器的输入,以便语法分析器使用 self.lexer.input(expression) self.lexer.lineno = 1 # 语法分析 ast = self.parser.parse(expression, lexer=self.lexer) # 验证AST validation_errors = self.validate_ast(ast) # 合并所有错误 all_errors = self.errors + validation_errors # 检查括号是否匹配 bracket_count = 0 for char in expression: if char == '(': bracket_count += 1 elif char == ')': bracket_count -= 1 if bracket_count < 0: all_errors.append("括号不匹配: 右括号过多") break if bracket_count > 0: all_errors.append("括号不匹配: 左括号过多") return { 'valid': len(all_errors) == 0, 'errors': all_errors, 'tokens': tokens, 'ast': ast } except Exception as e: return { 'valid': False, 'errors': [f"解析错误: {str(e)}"], 'tokens': [], 'ast': None } def main(): """主函数 - 用于验证表达式并输出结果""" validator = ExpressionValidator() # 获取当前日期 import datetime today = datetime.datetime.now() year = str(today.year) month = str(today.month).zfill(2) # 补齐两位 day = str(today.day).zfill(2) # 补齐两位 # 构建TXT文件路径 base_dir = os.path.dirname(os.path.abspath(__file__)) # 获取当前py文件所在目录 generated_alpha_dir = os.path.join(base_dir, "generated_alpha", year, month, day) # 检查文件夹是否存在 if not os.path.exists(generated_alpha_dir): print(f"错误: 今天的alpha文件夹不存在: {generated_alpha_dir}") print("请确保AI已经生成了今天的alpha表达式") return # 查找所有的TXT文件 txt_files = [f for f in os.listdir(generated_alpha_dir) if f.endswith('.txt')] if not txt_files: print(f"错误: 在 {generated_alpha_dir} 目录下没有找到TXT文件") return print(f"找到 {len(txt_files)} 个TXT文件:") for txt_file in txt_files: print(f" - {txt_file}") # 收集所有表达式 all_expressions = [] # 读取所有TXT文件 for txt_file in txt_files: file_path = os.path.join(generated_alpha_dir, txt_file) try: with open(file_path, 'r', encoding='utf-8') as f: # 读取所有行,去除空行和两端的空白字符 expressions = [line.strip() for line in f.readlines() if line.strip()] all_expressions.extend(expressions) print(f"已从 {txt_file} 读取 {len(expressions)} 个表达式") except Exception as e: print(f"警告: 读取文件 {txt_file} 失败 - {e}") continue if not all_expressions: print("错误: 所有TXT文件都是空的或只包含空行") return print(f"\n总共需要验证 {len(all_expressions)} 个表达式...") # 验证表达式 valid_expressions = [] invalid_expressions = [] for i, expr in enumerate(all_expressions, 1): if i % 10 == 0: print(f"已验证 {i}/{len(all_expressions)} 个表达式") result = validator.check_expression(expr) if result["valid"]: valid_expressions.append(expr) else: invalid_expressions.append({ "expression": expr, "errors": result["errors"] }) # 打印错误信息(可选) print(f"表达式 {i} 验证失败: {expr}") if result["errors"]: for error in result["errors"]: print(f" - {error}") # 保存有效表达式到 .手动处理每天alpha.txt if valid_expressions: valid_expressions = list(set(valid_expressions)) output_path = os.path.join(base_dir, "planning_post_alpha.txt") try: with open(output_path, 'w', encoding='utf-8') as f: # 每个表达式一行 for expr in valid_expressions: f.write(expr + "\n") print(f"有效表达式已保存到: {output_path}") # 如果需要,也可以保留源文件名信息 # source_info_path = os.path.join(base_dir, "手动处理每天alpha_source_info.txt") # with open(source_info_path, 'w', encoding='utf-8') as f: # f.write(f"生成日期: {year}-{month}-{day}\n") # f.write(f"源文件数量: {len(txt_files)}\n") # f.write(f"源文件列表: {', '.join(txt_files)}\n") # f.write(f"总表达式数: {len(all_expressions)}\n") # f.write(f"有效表达式数: {len(valid_expressions)}\n") # f.write(f"无效表达式数: {len(invalid_expressions)}\n") except Exception as e: print(f"错误: 保存有效表达式失败 - {e}") else: print("没有有效表达式可保存") # 输出无效表达式详细信息 if invalid_expressions: print("\n==========================") print("无效表达式详细信息:") print("==========================") # 按错误类型统计 error_stats = {} for item in invalid_expressions: for error in item["errors"]: # 提取主要错误类型 error_type = error.split(":")[0] if ":" in error else error error_stats[error_type] = error_stats.get(error_type, 0) + 1 print("\n错误类型统计:") for error_type, count in error_stats.items(): print(f" {error_type}: {count} 个") print("\n无效表达式列表(前20个):") for i, item in enumerate(invalid_expressions[:20], 1): print(f"{i}. {item['expression']}") for error in item["errors"]: print(f" - {error}") if len(invalid_expressions) > 20: print(f"... 还有 {len(invalid_expressions) - 20} 个无效表达式未显示") else: print("\n恭喜!所有表达式都验证通过!") # 输出验证结果 print(f"\n验证完成!") print(f"一共读取了 {len(txt_files)} 个 txt 文件") print(f"总共验证: {len(all_expressions)} 个表达式") print(f"有效表达式: {len(valid_expressions)}") print(f"无效表达式: {len(invalid_expressions)}") if __name__ == "__main__": main()