You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
15 KiB
181 lines
15 KiB
任务指令
|
|
假设
|
|
市场对企业的流动性风险存在阶段性定价偏差。当企业短期融资依赖度上升但经营性现金流未能同步改善时,市场往往低估其潜在的偿债压力与折价抛售资产风险,导致股价在未来1-3个季度内表现疲软。反之,当企业主动降低短期融资依赖、增强经营性现金流与短期债务的匹配度时,其财务稳健性的提升可能未被市场及时充分定价,从而存在超额收益机会。
|
|
实施方案
|
|
使用“短期有息负债”、“经营性现金流净额”及“货币资金”等基础数据字段,构建核心指标“流动性错配度”(LMD)= (短期有息负债 - 货币资金) / 过去四个季度平均经营性现金流净额。使用时序差分算子(ts_delta)计算LMD在过去两个季度的变化方向与幅度,并结合横截面排名算子(cs_rank)确定其在全市场中的相对位置。对LMD指标显著恶化(排名上升幅度居前)的公司建立空头仓位,对LMD指标持续改善(排名下降幅度居前)的公司建立多头仓位。
|
|
阿尔法因子优化建议
|
|
该因子信号可能受行业运营资本周期特性干扰。建议采用动态行业分档中性化:首先根据企业历史现金流波动性(使用ts_stddev算子)将其划分为“现金流稳定型”与“现金流周期型”两组,再在各自组内按细分行业进行横截面比较和排名调整。此举可在保留跨行业可比性的同时,更精准地捕捉行业内因流动性管理能力差异而产生的Alpha。
|
|
*=========================================================================================*
|
|
输出格式:
|
|
输出必须是且仅是纯文本。
|
|
每一行是一个完整、独立、语法正确的WebSim表达式。
|
|
严禁任何形式的解释、编号、标点包裹(如引号)、Markdown格式或额外文本。
|
|
===================== !!! 重点(输出方式) !!! =====================
|
|
现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。
|
|
**输出格式**(一行一个表达式, 每个表达式中间需要添加一个空行, 只要表达式本身, 不需要赋值, 不要解释, 不需要序号, 也不要输出多余的东西):
|
|
表达式
|
|
表达式
|
|
表达式
|
|
...
|
|
表达式
|
|
=================================================================
|
|
重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。
|
|
以下是我的账号有权限使用的操作符, 请严格按照操作符, 以及我提供的数据集, 进行生成,组合 20 个alpha:
|
|
必须遵守操作符的使用方法
|
|
|
|
以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子
|
|
|
|
========================= 操作符开始 =======================================注意: Operator: 后面的是操作符,
|
|
Description: 此字段后面的是操作符对应的描述或使用说明, Description字段后面的内容是使用说明, 不是操作符
|
|
特别注意!!!! 必须按照操作符字段Operator的使用说明生成 alphaOperator: abs(x)
|
|
Description: Absolute value of x
|
|
Operator: add(x, y, filter = false)
|
|
Description: Add all inputs (at least 2 inputs required). If filter = true, filter all input NaN to 0 before adding
|
|
Operator: densify(x)
|
|
Description: Converts a grouping field of many buckets into lesser number of only available buckets so as to make working with grouping fields computationally efficient
|
|
Operator: divide(x, y)
|
|
Description: x / y
|
|
Operator: inverse(x)
|
|
Description: 1 / x
|
|
Operator: log(x)
|
|
Description: Natural logarithm. For example: Log(high/low) uses natural logarithm of high/low ratio as stock weights.
|
|
Operator: max(x, y, ..)
|
|
Description: Maximum value of all inputs. At least 2 inputs are required
|
|
Operator: min(x, y ..)
|
|
Description: Minimum value of all inputs. At least 2 inputs are required
|
|
Operator: multiply(x ,y, ... , filter=false)
|
|
Description: Multiply all inputs. At least 2 inputs are required. Filter sets the NaN values to 1
|
|
Operator: power(x, y)
|
|
Description: x ^ y
|
|
Operator: reverse(x)
|
|
Description: - x
|
|
Operator: sign(x)
|
|
Description: if input > 0, return 1; if input < 0, return -1; if input = 0, return 0; if input = NaN, return NaN;
|
|
Operator: signed_power(x, y)
|
|
Description: x raised to the power of y such that final result preserves sign of x
|
|
Operator: sqrt(x)
|
|
Description: Square root of x
|
|
Operator: subtract(x, y, filter=false)
|
|
Description: x-y. If filter = true, filter all input NaN to 0 before subtracting
|
|
Operator: and(input1, input2)
|
|
Description: Logical AND operator, returns true if both operands are true and returns false otherwise
|
|
Operator: if_else(input1, input2, input 3)
|
|
Description: If input1 is true then return input2 else return input3.
|
|
Operator: input1 < input2
|
|
Description: If input1 < input2 return true, else return false
|
|
Operator: input1 <= input2
|
|
Description: Returns true if input1 <= input2, return false otherwise
|
|
Operator: input1 == input2
|
|
Description: Returns true if both inputs are same and returns false otherwise
|
|
Operator: input1 > input2
|
|
Description: Logic comparison operators to compares two inputs
|
|
Operator: input1 >= input2
|
|
Description: Returns true if input1 >= input2, return false otherwise
|
|
Operator: input1!= input2
|
|
Description: Returns true if both inputs are NOT the same and returns false otherwise
|
|
Operator: is_nan(input)
|
|
Description: If (input == NaN) return 1 else return 0
|
|
Operator: not(x)
|
|
Description: Returns the logical negation of x. If x is true (1), it returns false (0), and if input is false (0), it returns true (1).
|
|
Operator: or(input1, input2)
|
|
Description: Logical OR operator returns true if either or both inputs are true and returns false otherwise
|
|
Operator: days_from_last_change(x)
|
|
Description: Amount of days since last change of x
|
|
Operator: hump(x, hump = 0.01)
|
|
Description: Limits amount and magnitude of changes in input (thus reducing turnover)
|
|
Operator: kth_element(x, d, k)
|
|
Description: Returns K-th value of input by looking through lookback days. This operator can be used to backfill missing data if k=1
|
|
Operator: last_diff_value(x, d)
|
|
Description: Returns last x value not equal to current x value from last d days
|
|
Operator: ts_arg_max(x, d)
|
|
Description: Returns the relative index of the max value in the time series for the past d days. If the current day has the max value for the past d days, it returns 0. If previous day has the max value for the past d days, it returns 1
|
|
Operator: ts_arg_min(x, d)
|
|
Description: Returns the relative index of the min value in the time series for the past d days; If the current day has the min value for the past d days, it returns 0; If previous day has the min value for the past d days, it returns 1.
|
|
Operator: ts_av_diff(x, d)
|
|
Description: Returns x - tsmean(x, d), but deals with NaNs carefully. That is NaNs are ignored during mean computation
|
|
Operator: ts_backfill(x,lookback = d, k=1, ignore="NAN")
|
|
Description: Backfill is the process of replacing the NAN or 0 values by a meaningful value (i.e., a first non-NaN value)
|
|
Operator: ts_corr(x, y, d)
|
|
Description: Returns correlation of x and y for the past d days
|
|
Operator: ts_count_nans(x ,d)
|
|
Description: Returns the number of NaN values in x for the past d days
|
|
Operator: ts_covariance(y, x, d)
|
|
Description: Returns covariance of y and x for the past d days
|
|
Operator: ts_decay_linear(x, d, dense = false)
|
|
Description: Returns the linear decay on x for the past d days. Dense parameter=false means operator works in sparse mode and we treat NaN as 0. In dense mode we do not.
|
|
Operator: ts_delay(x, d)
|
|
Description: Returns x value d days ago
|
|
Operator: ts_delta(x, d)
|
|
Description: Returns x - ts_delay(x, d)
|
|
Operator: ts_mean(x, d)
|
|
Description: Returns average value of x for the past d days.
|
|
Operator: ts_product(x, d)
|
|
Description: Returns product of x for the past d days
|
|
Operator: ts_quantile(x,d, driver="gaussian" )
|
|
Description: It calculates ts_rank and apply to its value an inverse cumulative density function from driver distribution. Possible values of driver (optional ) are "gaussian", "uniform", "cauchy" distribution where "gaussian" is the default.
|
|
Operator: ts_rank(x, d, constant = 0)
|
|
Description: Rank the values of x for each instrument over the past d days, then return the rank of the current value + constant. If not specified, by default, constant = 0.
|
|
Operator: ts_regression(y, x, d, lag = 0, rettype = 0)
|
|
Description: Returns various parameters related to regression function
|
|
Operator: ts_scale(x, d, constant = 0)
|
|
Description: Returns (x - ts_min(x, d)) / (ts_max(x, d) - ts_min(x, d)) + constant. This operator is similar to scale down operator but acts in time series space
|
|
Operator: ts_std_dev(x, d)
|
|
Description: Returns standard deviation of x for the past d days
|
|
Operator: ts_step(1)
|
|
Description: Returns days' counter
|
|
Operator: ts_sum(x, d)
|
|
Description: Sum values of x for the past d days.
|
|
Operator: ts_zscore(x, d)
|
|
Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean: (x - tsmean(x,d)) / tsstddev(x,d). This operator may help reduce outliers and drawdown.
|
|
Operator: normalize(x, useStd = false, limit = 0.0)
|
|
Description: Calculates the mean value of all valid alpha values for a certain date, then subtracts that mean from each element
|
|
Operator: quantile(x, driver = gaussian, sigma = 1.0)
|
|
Description: Rank the raw vector, shift the ranked Alpha vector, apply distribution (gaussian, cauchy, uniform). If driver is uniform, it simply subtract each Alpha value with the mean of all Alpha values in the Alpha vector
|
|
Operator: rank(x, rate=2)
|
|
Description: Ranks the input among all the instruments and returns an equally distributed number between 0.0 and 1.0. For precise sort, use the rate as 0
|
|
Operator: scale(x, scale=1, longscale=1, shortscale=1)
|
|
Description: Scales input to booksize. We can also scale the long positions and short positions to separate scales by mentioning additional parameters to the operator
|
|
Operator: winsorize(x, std=4)
|
|
Description: Winsorizes x to make sure that all values in x are between the lower and upper limits, which are specified as multiple of std.
|
|
Operator: zscore(x)
|
|
Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean
|
|
Operator: vec_avg(x)
|
|
Description: Taking mean of the vector field x
|
|
Operator: vec_sum(x)
|
|
Description: Sum of vector field x
|
|
Operator: bucket(rank(x), range="0, 1, 0.1" or buckets = "2,5,6,7,10")
|
|
Description: Convert float values into indexes for user-specified buckets. Bucket is useful for creating group values, which can be passed to GROUP as input
|
|
Operator: trade_when(x, y, z)
|
|
Description: Used in order to change Alpha values only under a specified condition and to hold Alpha values in other cases. It also allows to close Alpha positions (assign NaN values) under a specified condition
|
|
Operator: group_backfill(x, group, d, std = 4.0)
|
|
Description: If a certain value for a certain date and instrument is NaN, from the set of same group instruments, calculate winsorized mean of all non-NaN values over last d days
|
|
Operator: group_mean(x, weight, group)
|
|
Description: All elements in group equals to the mean
|
|
Operator: group_neutralize(x, group)
|
|
Description: Neutralizes Alpha against groups. These groups can be subindustry, industry, sector, country or a constant
|
|
Operator: group_rank(x, group)
|
|
Description: Each elements in a group is assigned the corresponding rank in this group
|
|
Operator: group_scale(x, group)
|
|
Description: Normalizes the values in a group to be between 0 and 1. (x - groupmin) / (groupmax - groupmin)
|
|
Operator: group_zscore(x, group)
|
|
Description: Calculates group Z-score - numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean. zscore = (data - mean) / stddev of x for each instrument within its group.
|
|
========================= 操作符结束 =======================================
|
|
|
|
========================= 数据字段开始 =======================================
|
|
注意: data_set_name: 后面的是数据字段(可以使用), description: 此字段后面的是数据字段对应的描述或使用说明(不能使用), description_cn字段后面的内容是中文使用说明(不能使用)
|
|
|
|
{'data_set_name': '可以使用:forward_price_120', 'description': '不可使用,仅供参考:Forward price at 120 days derived from a synthetic long option with payoff similar to long stock + option dynamics. Combination of long ATM call and short ATM put.'}
|
|
{'data_set_name': '可以使用:fnd6_acdo', 'description': '不可使用,仅供参考:Current Assets of Discontinued Operations'}
|
|
{'data_set_name': '可以使用:fnd6_cicurr', 'description': '不可使用,仅供参考:Comp Inc - Currency Trans Adj'}
|
|
{'data_set_name': '可以使用:fnd6_newqeventv110_cicurrq', 'description': '不可使用,仅供参考:Comp Inc - Currency Trans Adj'}
|
|
{'data_set_name': '可以使用:fnd6_newqv1300_cicurrq', 'description': '不可使用,仅供参考:Comp Inc - Currency Trans Adj'}
|
|
{'data_set_name': '可以使用:fnd6_newqv1300_ciderglq', 'description': '不可使用,仅供参考:Comp Inc - Derivative Gains/Losses'}
|
|
{'data_set_name': '可以使用:multi_factor_acceleration_score_derivative', 'description': '不可使用,仅供参考:Change in the acceleration of multi-factor score compared to previous period.'}
|
|
{'data_set_name': '可以使用:fn_comp_not_rec_a', 'description': '不可使用,仅供参考:Unrecognized cost of unvested share-based compensation awards.'}
|
|
{'data_set_name': '可以使用:fn_comp_not_rec_stock_options_a', 'description': '不可使用,仅供参考:Unrecognized cost of unvested stock option awards.'}
|
|
{'data_set_name': '可以使用:fn_comp_not_rec_stock_options_q', 'description': '不可使用,仅供参考:Unrecognized cost of unvested stock option awards.'}
|
|
{'data_set_name': '可以使用:fn_def_tax_assets_liab_net_q', 'description': '不可使用,仅供参考:Amount, after allocation of valuation allowances and deferred tax liability, of deferred tax asset attributable to deductible differences and carryforwards, without jurisdictional netting.'}
|
|
{'data_set_name': '可以使用:fnd2_a_ltrmdmrepopliny5', 'description': '不可使用,仅供参考:Amount of long-term debt payable, sinking fund requirements, and other securities issued that are redeemable by holder at fixed or determinable prices and dates maturing in the 5th fiscal year following the latest fiscal year. Excludes interim and annual periods when interim periods are reported on a rolling approach, from latest balance sheet date.'}
|
|
========================= 数据字段结束 =======================================
|
|
|
|
以上数据字段和操作符, 按照Description说明组合, 但是每一个 alpha 组合的使用的数据字段和操作符不要过于集中, 在符合语法的情况下, 多尝试不同的组合 |