You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
AlphaGenerator/手动处理每天alpha.txt

79 lines
3.7 KiB

add(ts_mean(ts_std_dev(anl4_netdebt_flag, 63), 21), ts_zscore(anl4_netdebt_flag, 21))
subtract(multiply(ts_rank(anl4_netdebt_flag, 84), ts_delta(anl4_netdebt_flag, 42)), group_mean(anl4_netdebt_flag, 1, bucket(ts_sum(anl4_netdebt_flag, 21))))
if_else(ts_std_dev(anl4_netdebt_flag, 63) < ts_mean(ts_std_dev(anl4_netdebt_flag, 63), 252), ts_corr(anl4_netdebt_flag, ts_delay(anl4_netdebt_flag, 21), 63), reverse(ts_rank(anl4_netdebt_flag, 126)))
group_neutralize(ts_av_diff(anl4_netdebt_flag, 42), bucket(ts_scale(anl4_netdebt_flag, 1, 1, 1)))
power(ts_decay_linear(anl4_netdebt_flag, 21, false), divide(ts_sum(anl4_netdebt_flag, 63), ts_mean(anl4_netdebt_flag, 63)))
multiply(ts_zscore(anl4_netdebt_flag, 84), sign(ts_delta(anl4_netdebt_flag, 21)))
ts_regression(anl4_netdebt_flag, ts_step(1), 63, 0, 0)
rank(ts_backfill(anl4_netdebt_flag, 21, 1, "NAN"), 2)
subtract(ts_quantile(anl4_netdebt_flag, 126, "gaussian"), quantile(anl4_netdebt_flag, "gaussian", 1.0))
hump(group_zscore(anl4_netdebt_flag, bucket(ts_arg_max(anl4_netdebt_flag, 21))), 0.01)
if_else(is_nan(anl4_netdebt_flag), ts_mean(anl4_netdebt_flag, 21), ts_covariance(anl4_netdebt_flag, ts_delay(anl4_netdebt_flag, 1), 42))
add(ts_count_nans(anl4_netdebt_flag, 63), reverse(ts_rank(anl4_netdebt_flag, 84)))
group_scale(ts_product(anl4_netdebt_flag, 21), bucket(ts_arg_min(anl4_netdebt_flag, 42)))
multiply(ts_mean(anl4_netdebt_flag, 126), inverse(ts_std_dev(anl4_netdebt_flag, 63)))
trade_when(ts_delta(anl4_netdebt_flag, 21) > 0, ts_sum(anl4_netdebt_flag, 42), ts_delay(anl4_netdebt_flag, 21))
ts_scale(ts_av_diff(anl4_netdebt_flag, 84), 21, 0)
subtract(ts_sum(anl4_netdebt_flag, 63), vec_avg(bucket(ts_mean(anl4_netdebt_flag, 21))))
group_rank(ts_backfill(anl4_netdebt_flag, 42, 1, "NAN"), bucket(last_diff_value(anl4_netdebt_flag, 21)))
kth_element(anl4_netdebt_flag, 126, 1)
winsorize(ts_corr(anl4_netdebt_flag, ts_decay_linear(anl4_netdebt_flag, 21, false), 63), 4)
ts_std_dev(client_retention_rate, 90) < ts_mean(ts_std_dev(client_retention_rate, 90), 270)
ts_rank(client_retention_rate, 90) > 0.8 and ts_std_dev(client_retention_rate, 90) < ts_std_dev(client_retention_rate, 270)
group_zscore(ts_std_dev(client_retention_rate, 90), sector) < -1.0
ts_scale(client_retention_rate, 90) > 0.7 and ts_std_dev(client_retention_rate, 90) < 0.05
ts_delta(ts_std_dev(client_retention_rate, 90), 90) < 0 and ts_std_dev(client_retention_rate, 90) < ts_mean(client_retention_rate, 270) * 0.1
ts_zscore(ts_std_dev(client_retention_rate, 90), 90) < -2.0
group_neutralize(ts_std_dev(client_retention_rate, 90), industry) < 0.03
ts_decay_linear(ts_std_dev(client_retention_rate, 90), 90) < ts_decay_linear(ts_std_dev(client_retention_rate, 270), 270)
ts_count_nans(client_retention_rate, 90) == 0 and ts_std_dev(client_retention_rate, 90) < 0.02
ts_arg_min(ts_std_dev(client_retention_rate, 90), 180) < 90
ts_corr(client_retention_rate, revenue_growth, 90) > 0.6 and ts_std_dev(client_retention_rate, 90) < 0.04
ts_backfill(ts_std_dev(client_retention_rate, 90), 90, 1) < ts_mean(ts_std_dev(client_retention_rate, 90), 180)
group_scale(ts_std_dev(client_retention_rate, 90), industry) < 0.3
ts_quantile(ts_std_dev(client_retention_rate, 90), 90, "gaussian") < 0.2
ts_av_diff(ts_std_dev(client_retention_rate, 90), 90) < -0.01
ts_regression(client_retention_rate, economic_cycle_index, 90, 0, 1) > 0.5 and ts_std_dev(client_retention_rate, 90) < 0.03
ts_product(ts_std_dev(client_retention_rate, 90), 90) < 1.0e-5
ts_mean(client_retention_rate, 90) > 0.8 and ts_std_dev(client_retention_rate, 90) < 0.01
ts_step(1) % 90 == 0 and ts_std_dev(client_retention_rate, 90) < 0.02
rank(ts_std_dev(client_retention_rate, 90), 0) > 0.9 and group_zscore(ts_std_dev(client_retention_rate, 90), country) < -0.5