You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
AlphaGenerator/manual_prompt/2026/01/12/manual_prompt_2026011214071...

211 lines
16 KiB

任务指令
**名称**
机构投资者持仓集中度反转效应
**假设**
当一家公司的机构投资者持仓高度集中(如前五大机构持股比例显著高于历史中位数),可能意味着该股票短期内因资金抱团而出现估值泡沫;但随着机构调仓或共识分化,持仓集中度会逐步下降,导致股价回调。反之,若机构持仓集中度从低位持续回升,则预示机构资金重新形成共识,可能推动股价上涨。
**实施方案**
使用机构持股明细数据,计算每季度前五大机构持股比例之和的横截面分位数排名。通过时序差分算子(如 `ts_delta`)监测持仓集中度的变化方向与幅度,对集中度从高位(前30%)显著回落(分位数下降超过20%)的股票建立空头仓位,对集中度从低位(后30%)持续攀升(分位数上升超过20%)的股票建立多头仓位。
**阿尔法因子优化建议**
不同市值风格股票的机构行为差异显著(如大盘股机构持仓稳定性更高)。建议按市值分档进行动态中性化处理,并在因子中引入“机构持仓稳定性”指标(如持仓周期方差)作为调节参数,对稳定性低的股票赋予更高权重,以捕捉短期调仓带来的反转机会。
*=========================================================================================*
输出格式:
输出必须是且仅是纯文本。
每一行是一个完整、独立、语法正确的WebSim表达式。
严禁任何形式的解释、编号、标点包裹(如引号)、Markdown格式或额外文本。
===================== !!! 重点(输出方式) !!! =====================
现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。
不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合
**输出格式**(一行一个表达式, 每个表达式中间需要添加一个空行, 只要表达式本身, 不需要赋值, 不要解释, 不需要序号, 也不要输出多余的东西):
表达式
表达式
表达式
...
表达式
=================================================================
重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。
以下是我的账号有权限使用的操作符, 请严格按照操作符, 以及我提供的数据集, 进行生成,组合 20 个alpha:
不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合
=================================================================
以下是错误的组合, 请勿类似的操作:
Operator ts_product does not support event inputs
Operator ts_zscore does not support event inputs
Operator ts_mean does not support event inputs
Operator ts_scale does not support event inputs
Operator add does not support event inputs
Operator sign does not support event inputs
Operator subtract does not support event inputs
Operator ts_delta does not support event inputs
Operator ts_rank does not support event inputs
Operator greater does not support event inputs
Operator ts_av_diff does not support event inputs
Operator ts_quantile does not support event inputs
Operator ts_count_nans does not support event inputs
Operator ts_covariance does not support event inputs
Operator ts_arg_min does not support event inputs
Operator divide does not support event inputs
Operator ts_corr does not support event inputs
Operator multiply does not support event inputs
Operator if_else does not support event inputs
Operator ts_sum does not support event inputs
Operator ts_delay does not support event inputs
Operator group_zscore does not support event inputs
Operator ts_arg_max does not support event inputs
Operator ts_std_dev does not support event inputs
Operator ts_backfill does not support event inputs
以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子
========================= 操作符开始 =======================================
注意: Operator: 后面的是操作符(是可以使用的),
Description: 此字段后面的是操作符对应的描述或使用说明(禁止使用, 仅供参考), Description字段后面的内容是使用说明, 不是操作符
特别注意!!!! 必须按照操作符字段Operator的使用说明生成 alphaOperator: abs(x)
Description: Absolute value of x
Operator: add(x, y, filter = false)
Description: Add all inputs (at least 2 inputs required). If filter = true, filter all input NaN to 0 before adding
Operator: densify(x)
Description: Converts a grouping field of many buckets into lesser number of only available buckets so as to make working with grouping fields computationally efficient
Operator: divide(x, y)
Description: x / y
Operator: inverse(x)
Description: 1 / x
Operator: log(x)
Description: Natural logarithm. For example: Log(high/low) uses natural logarithm of high/low ratio as stock weights.
Operator: max(x, y, ..)
Description: Maximum value of all inputs. At least 2 inputs are required
Operator: min(x, y ..)
Description: Minimum value of all inputs. At least 2 inputs are required
Operator: multiply(x ,y, ... , filter=false)
Description: Multiply all inputs. At least 2 inputs are required. Filter sets the NaN values to 1
Operator: power(x, y)
Description: x ^ y
Operator: reverse(x)
Description: - x
Operator: sign(x)
Description: if input > 0, return 1; if input < 0, return -1; if input = 0, return 0; if input = NaN, return NaN;
Operator: signed_power(x, y)
Description: x raised to the power of y such that final result preserves sign of x
Operator: sqrt(x)
Description: Square root of x
Operator: subtract(x, y, filter=false)
Description: x-y. If filter = true, filter all input NaN to 0 before subtracting
Operator: and(input1, input2)
Description: Logical AND operator, returns true if both operands are true and returns false otherwise
Operator: if_else(input1, input2, input 3)
Description: If input1 is true then return input2 else return input3.
Operator: input1 < input2
Description: If input1 < input2 return true, else return false
Operator: input1 <= input2
Description: Returns true if input1 <= input2, return false otherwise
Operator: input1 == input2
Description: Returns true if both inputs are same and returns false otherwise
Operator: input1 > input2
Description: Logic comparison operators to compares two inputs
Operator: input1 >= input2
Description: Returns true if input1 >= input2, return false otherwise
Operator: input1!= input2
Description: Returns true if both inputs are NOT the same and returns false otherwise
Operator: is_nan(input)
Description: If (input == NaN) return 1 else return 0
Operator: not(x)
Description: Returns the logical negation of x. If x is true (1), it returns false (0), and if input is false (0), it returns true (1).
Operator: or(input1, input2)
Description: Logical OR operator returns true if either or both inputs are true and returns false otherwise
Operator: days_from_last_change(x)
Description: Amount of days since last change of x
Operator: hump(x, hump = 0.01)
Description: Limits amount and magnitude of changes in input (thus reducing turnover)
Operator: kth_element(x, d, k)
Description: Returns K-th value of input by looking through lookback days. This operator can be used to backfill missing data if k=1
Operator: last_diff_value(x, d)
Description: Returns last x value not equal to current x value from last d days
Operator: ts_arg_max(x, d)
Description: Returns the relative index of the max value in the time series for the past d days. If the current day has the max value for the past d days, it returns 0. If previous day has the max value for the past d days, it returns 1
Operator: ts_arg_min(x, d)
Description: Returns the relative index of the min value in the time series for the past d days; If the current day has the min value for the past d days, it returns 0; If previous day has the min value for the past d days, it returns 1.
Operator: ts_av_diff(x, d)
Description: Returns x - tsmean(x, d), but deals with NaNs carefully. That is NaNs are ignored during mean computation
Operator: ts_backfill(x,lookback = d, k=1, ignore="NAN")
Description: Backfill is the process of replacing the NAN or 0 values by a meaningful value (i.e., a first non-NaN value)
Operator: ts_corr(x, y, d)
Description: Returns correlation of x and y for the past d days
Operator: ts_count_nans(x ,d)
Description: Returns the number of NaN values in x for the past d days
Operator: ts_covariance(y, x, d)
Description: Returns covariance of y and x for the past d days
Operator: ts_decay_linear(x, d, dense = false)
Description: Returns the linear decay on x for the past d days. Dense parameter=false means operator works in sparse mode and we treat NaN as 0. In dense mode we do not.
Operator: ts_delay(x, d)
Description: Returns x value d days ago
Operator: ts_delta(x, d)
Description: Returns x - ts_delay(x, d)
Operator: ts_mean(x, d)
Description: Returns average value of x for the past d days.
Operator: ts_product(x, d)
Description: Returns product of x for the past d days
Operator: ts_quantile(x,d, driver="gaussian" )
Description: It calculates ts_rank and apply to its value an inverse cumulative density function from driver distribution. Possible values of driver (optional ) are "gaussian", "uniform", "cauchy" distribution where "gaussian" is the default.
Operator: ts_rank(x, d, constant = 0)
Description: Rank the values of x for each instrument over the past d days, then return the rank of the current value + constant. If not specified, by default, constant = 0.
Operator: ts_regression(y, x, d, lag = 0, rettype = 0)
Description: Returns various parameters related to regression function
Operator: ts_scale(x, d, constant = 0)
Description: Returns (x - ts_min(x, d)) / (ts_max(x, d) - ts_min(x, d)) + constant. This operator is similar to scale down operator but acts in time series space
Operator: ts_std_dev(x, d)
Description: Returns standard deviation of x for the past d days
Operator: ts_step(1)
Description: Returns days' counter
Operator: ts_sum(x, d)
Description: Sum values of x for the past d days.
Operator: ts_zscore(x, d)
Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean: (x - tsmean(x,d)) / tsstddev(x,d). This operator may help reduce outliers and drawdown.
Operator: normalize(x, useStd = false, limit = 0.0)
Description: Calculates the mean value of all valid alpha values for a certain date, then subtracts that mean from each element
Operator: quantile(x, driver = gaussian, sigma = 1.0)
Description: Rank the raw vector, shift the ranked Alpha vector, apply distribution (gaussian, cauchy, uniform). If driver is uniform, it simply subtract each Alpha value with the mean of all Alpha values in the Alpha vector
Operator: rank(x, rate=2)
Description: Ranks the input among all the instruments and returns an equally distributed number between 0.0 and 1.0. For precise sort, use the rate as 0
Operator: scale(x, scale=1, longscale=1, shortscale=1)
Description: Scales input to booksize. We can also scale the long positions and short positions to separate scales by mentioning additional parameters to the operator
Operator: winsorize(x, std=4)
Description: Winsorizes x to make sure that all values in x are between the lower and upper limits, which are specified as multiple of std.
Operator: zscore(x)
Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean
Operator: vec_avg(x)
Description: Taking mean of the vector field x
Operator: vec_sum(x)
Description: Sum of vector field x
Operator: bucket(rank(x), range="0, 1, 0.1" or buckets = "2,5,6,7,10")
Description: Convert float values into indexes for user-specified buckets. Bucket is useful for creating group values, which can be passed to GROUP as input
Operator: trade_when(x, y, z)
Description: Used in order to change Alpha values only under a specified condition and to hold Alpha values in other cases. It also allows to close Alpha positions (assign NaN values) under a specified condition
Operator: group_backfill(x, group, d, std = 4.0)
Description: If a certain value for a certain date and instrument is NaN, from the set of same group instruments, calculate winsorized mean of all non-NaN values over last d days
Operator: group_mean(x, weight, group)
Description: All elements in group equals to the mean
Operator: group_neutralize(x, group)
Description: Neutralizes Alpha against groups. These groups can be subindustry, industry, sector, country or a constant
Operator: group_rank(x, group)
Description: Each elements in a group is assigned the corresponding rank in this group
Operator: group_scale(x, group)
Description: Normalizes the values in a group to be between 0 and 1. (x - groupmin) / (groupmax - groupmin)
Operator: group_zscore(x, group)
Description: Calculates group Z-score - numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean. zscore = (data - mean) / stddev of x for each instrument within its group.
========================= 操作符结束 =======================================
========================= 数据字段开始 =======================================
注意: data_set_name: 后面的是数据字段(可以使用), description: 此字段后面的是数据字段对应的描述或使用说明(不能使用), description_cn字段后面的内容是中文使用说明(不能使用)
{'data_set_name': '可以使用:multi_factor_acceleration_score_derivative', 'description': '不可使用,仅供参考:Change in the acceleration of multi-factor score compared to previous period.'}
{'data_set_name': '可以使用:pv13_h2_min2_1k_sector', 'description': '不可使用,仅供参考:Grouping fields for top 1000'}
{'data_set_name': '可以使用:pv13_h_min22_1000_sector', 'description': '不可使用,仅供参考:Grouping fields for top 1000'}
{'data_set_name': '可以使用:pv13_h_min24_500_sector', 'description': '不可使用,仅供参考:Grouping fields for top 500'}
{'data_set_name': '可以使用:pv13_h_min2_focused_sector', 'description': '不可使用,仅供参考:Grouping fields for top 200'}
{'data_set_name': '可以使用:pv13_h_min52_1k_sector', 'description': '不可使用,仅供参考:Grouping fields for top 1000'}
{'data_set_name': '可以使用:fn_comp_not_rec_stock_options_a', 'description': '不可使用,仅供参考:Unrecognized cost of unvested stock option awards.'}
{'data_set_name': '可以使用:fn_comp_not_rec_stock_options_q', 'description': '不可使用,仅供参考:Unrecognized cost of unvested stock option awards.'}
{'data_set_name': '可以使用:fnd2_a_ltrmdmrepopliny5', 'description': '不可使用,仅供参考:Amount of long-term debt payable, sinking fund requirements, and other securities issued that are redeemable by holder at fixed or determinable prices and dates maturing in the 5th fiscal year following the latest fiscal year. Excludes interim and annual periods when interim periods are reported on a rolling approach, from latest balance sheet date.'}
========================= 数据字段结束 =======================================
以上数据字段和操作符, 按照Description说明组合, 但是每一个 alpha 组合的使用的数据字段和操作符不要过于集中, 在符合语法的情况下, 多尝试不同的组合