You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
5.8 KiB
125 lines
5.8 KiB
|
|
|
|
Here are the 100 alpha factors grouped by the five dimensions:
|
|
|
|
### 趋势动能形态因子 (Trend Momentum)
|
|
```python
|
|
ts_delta(ts_zscore(close, 20), 10)
|
|
ts_regression(ts_zscore(close, 20), ts_step(1), 100, rettype=1)
|
|
ts_std_dev(ts_delta(close, 5), 20)
|
|
ts_zscore(ts_regression(close, ts_step(1), 60, rettype=0), 12)
|
|
ts_delta(ts_std_dev(close, 20), 10)
|
|
ts_corr(ts_delta(close, 5), ts_step(1), 20)
|
|
ts_regression(ts_zscore(close, 12), ts_step(1), 60, rettype=4)
|
|
ts_delta(ts_regression(close, ts_step(1), 30, rettype=1), 15)
|
|
ts_scale(ts_delta(close, 10), 60)
|
|
ts_zscore(ts_delta(close, 20), 60)
|
|
ts_regression(ts_delta(close, 5), ts_step(1), 30, rettype=1)
|
|
ts_std_dev(ts_regression(close, ts_step(1), 20, rettype=1), 40)
|
|
ts_delta(ts_zscore(close, 14), 7)
|
|
ts_regression(ts_zscore(close, 10), ts_step(1), 50, rettype=3)
|
|
ts_corr(ts_delta(close, 10), ts_step(1), 30)
|
|
ts_zscore(ts_regression(close, ts_step(1), 25, rettype=0), 30)
|
|
ts_delta(ts_regression(ts_zscore(close, 15), ts_step(1), 40, rettype=1), 10)
|
|
ts_std_dev(ts_zscore(close, 20), 10)
|
|
ts_regression(ts_zscore(close, 5), ts_step(1), 20, rettype=1)
|
|
ts_delta(ts_std_dev(ts_zscore(close, 10), 20), 5)
|
|
```
|
|
|
|
### 行业质量与市场环境适配度因子 (Industry Quality & Market Fit)
|
|
```python
|
|
market_cap * inverse(ts_std_dev(close, 60))
|
|
market_cap * ts_zscore(close, 120)
|
|
market_cap / ts_std_dev(volume, 30)
|
|
ts_zscore(market_cap, 240) * inverse(ts_zscore(ts_std_dev(close, 30), 240))
|
|
market_cap * ts_correlation(close, vwap, 60)
|
|
market_cap * inverse(ts_max(ts_std_dev(close, 20), 120))
|
|
market_cap / ts_sum(ts_std_dev(close, 10), 60)
|
|
ts_zscore(market_cap, 360) * inverse(ts_zscore(ts_std_dev(close, 30), 360))
|
|
market_cap * ts_correlation(close, volume, 60)
|
|
market_cap * inverse(ts_std_dev(ts_zscore(close, 20), 60))
|
|
market_cap / ts_std_dev(ts_zscore(close, 10), 60)
|
|
ts_zscore(market_cap, 480) * inverse(ts_zscore(ts_std_dev(close, 30), 480))
|
|
market_cap * ts_correlation(ts_zscore(close, 20), ts_zscore(volume, 20), 60)
|
|
market_cap * inverse(ts_std_dev(ts_zscore(close, 10), 60))
|
|
market_cap / ts_std_dev(ts_zscore(close, 15), 90)
|
|
ts_zscore(market_cap, 600) * inverse(ts_zscore(ts_std_dev(close, 30), 600))
|
|
market_cap * ts_correlation(ts_zscore(close, 30), ts_zscore(volume, 30), 60)
|
|
market_cap * inverse(ts_std_dev(ts_zscore(close, 20), 90))
|
|
market_cap / ts_std_dev(ts_zscore(close, 25), 120)
|
|
ts_zscore(market_cap, 720) * inverse(ts_zscore(ts_std_dev(close, 30), 720))
|
|
```
|
|
|
|
### 行业内部分化与领导力因子 (Intra-Industry Dynamics)
|
|
```python
|
|
group_std_dev(close, industry)
|
|
group_corr(close, group_rank(market_cap, industry), 12)
|
|
group_zscore(ts_zscore(close, 20), industry)
|
|
group_mean(ts_zscore(close, 10), industry)
|
|
group_std_dev(ts_zscore(close, 15), industry)
|
|
group_corr(ts_zscore(close, 5), group_rank(market_cap, industry), 20)
|
|
group_zscore(ts_delta(close, 10), industry)
|
|
group_mean(ts_delta(close, 5), industry)
|
|
group_std_dev(ts_delta(close, 20), industry)
|
|
group_corr(ts_delta(close, 15), group_rank(market_cap, industry), 30)
|
|
group_zscore(ts_zscore(close, 10), industry)
|
|
group_mean(ts_zscore(close, 5), industry)
|
|
group_std_dev(ts_zscore(close, 20), industry)
|
|
group_corr(ts_zscore(close, 10), group_rank(market_cap, industry), 20)
|
|
group_zscore(ts_delta(close, 5), industry)
|
|
group_mean(ts_delta(close, 10), industry)
|
|
group_std_dev(ts_delta(close, 15), industry)
|
|
group_corr(ts_delta(close, 25), group_rank(market_cap, industry), 40)
|
|
group_zscore(ts_zscore(close, 15), industry)
|
|
group_mean(ts_zscore(close, 20), industry)
|
|
```
|
|
|
|
### 超买超卖与情绪反转因子 (Overbought/Oversold & Reversal)
|
|
```python
|
|
ts_zscore(close, 14)
|
|
ts_delta(ts_zscore(close, 14), 5)
|
|
ts_zscore(ts_delta(close, 5), 20)
|
|
ts_std_dev(ts_zscore(close, 14), 20)
|
|
ts_zscore(ts_std_dev(close, 14), 20)
|
|
ts_delta(ts_std_dev(close, 14), 5)
|
|
ts_zscore(ts_delta(close, 1), 5)
|
|
ts_zscore(ts_delta(close, 5), 5)
|
|
ts_zscore(ts_delta(close, 10), 5)
|
|
ts_zscore(ts_delta(close, 15), 5)
|
|
ts_zscore(ts_delta(close, 20), 5)
|
|
ts_zscore(ts_delta(close, 25), 5)
|
|
ts_zscore(ts_delta(close, 30), 5)
|
|
ts_zscore(ts_delta(close, 35), 5)
|
|
ts_zscore(ts_delta(close, 40), 5)
|
|
ts_zscore(ts_delta(close, 45), 5)
|
|
ts_zscore(ts_delta(close, 50), 5)
|
|
ts_zscore(ts_delta(close, 55), 5)
|
|
ts_zscore(ts_delta(close, 60), 5)
|
|
ts_zscore(ts_delta(close, 65), 5)
|
|
```
|
|
|
|
### 行业间关联与动量溢出因子 (Inter-Industry Momentum Spillover)
|
|
```python
|
|
ts_delta(group_mean(ts_zscore(close, 20), industry), 1)
|
|
ts_corr(group_mean(ts_zscore(close, 20), industry), ts_step(1), 12)
|
|
group_zscore(ts_delta(group_mean(close, industry), 1), industry)
|
|
ts_regression(group_mean(ts_zscore(close, 20), industry), ts_step(1), 12, rettype=1)
|
|
ts_std_dev(group_mean(ts_zscore(close, 20), industry), 12)
|
|
ts_zscore(ts_delta(group_mean(close, industry), 5), 12)
|
|
ts_corr(group_mean(ts_zscore(close, 10), industry), ts_step(1), 12)
|
|
group_zscore(ts_delta(group_mean(close, industry), 10), industry)
|
|
ts_regression(group_mean(ts_zscore(close, 10), industry), ts_step(1), 12, rettype=1)
|
|
ts_std_dev(group_mean(ts_zscore(close, 10), industry), 12)
|
|
ts_zscore(ts_delta(group_mean(close, industry), 15), 12)
|
|
ts_corr(group_mean(ts_zscore(close, 15), industry), ts_step(1), 12)
|
|
group_zscore(ts_delta(group_mean(close, industry), 20), industry)
|
|
ts_regression(group_mean(ts_zscore(close, 15), industry), ts_step(1), 12, rettype=1)
|
|
ts_std_dev(group_mean(ts_zscore(close, 15), industry), 12)
|
|
ts_zscore(ts_delta(group_mean(close, industry), 25), 12)
|
|
ts_corr(group_mean(ts_zscore(close, 20), industry), ts_step(1), 12)
|
|
group_zscore(ts_delta(group_mean(close, industry), 30), industry)
|
|
ts_regression(group_mean(ts_zscore(close, 20), industry), ts_step(1), 12, rettype=1)
|
|
ts_std_dev(group_mean(ts_zscore(close, 20), industry), 12)
|
|
```
|
|
|
|
Each set of factors targets a specific dimension of industry selection, leveraging WebSim's time series and group functions to capture nuanced market dynamics. These factors are designed to work within WorldQuant's platform constraints while exploring innovative alpha sources beyond traditional metrics. |