You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
18 KiB
196 lines
18 KiB
任务指令
|
|
ESG 表现与盈余质量联动因子
|
|
假设高 ESG(环境、社会、治理)表现的公司通常具备更完善的内部治理体系和风险管控能力,盈余管理动机较弱,盈余质量(如盈利真实性、持续性)更高,长期股价表现更稳健,适合建立多头仓位;反之,低 ESG 表现的公司易因治理缺陷、合规风险导致盈余质量低下,盈利稳定性差,应建立空头仓位。且 ESG 表现的边际改善对盈余质量的提升效应,比静态高 ESG 表现更具 alpha 收益潜力。
|
|
实施方案以 ESG 综合评分及各维度(治理、社会、环境)评分作为核心变量,搭配盈余质量指标(如应计利润比率、盈利现金保障倍数)构建联动因子。通过时序分析算子追踪过去 12 个月 ESG 评分的变化趋势与盈余质量指标的匹配度,对 ESG 评分持续提升且盈余质量同步改善的公司纳入多头池,对 ESG 评分下滑且盈余质量恶化的公司纳入空头池,同时消除企业规模及行业周期对指标的干扰。
|
|
阿尔法因子优化建议
|
|
可将 ESG 各维度拆分单独与盈余质量联动,筛选出对盈余质量影响最显著的核心维度(如治理维度)强化权重,弱化非核心维度干扰;2. 采用行业中性化处理方案,消除不同行业 ESG 评价标准差异及盈余质量基准不同带来的偏差,可结合分组算子对同类行业公司进行横向对比;3. 引入动态阈值机制,基于市场整体 ESG 水平及盈余质量分布,实时调整多空仓位的筛选标准,避免静态标准在市场周期切换时失效。
|
|
|
|
*=========================================================================================*
|
|
输出格式:
|
|
输出必须是且仅是纯文本。
|
|
每一行是一个完整、独立、语法正确的WebSim表达式。
|
|
严禁任何形式的解释、编号、标点包裹(如引号)、Markdown格式或额外文本。
|
|
===================== !!! 重点(输出方式) !!! =====================
|
|
现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。
|
|
**输出格式**(一行一个表达式, 每个表达式中间需要添加一个空行, 只要表达式本身, 不需要赋值, 不要解释, 不需要序号, 也不要输出多余的东西):
|
|
表达式
|
|
表达式
|
|
表达式
|
|
...
|
|
表达式
|
|
=================================================================
|
|
重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。
|
|
以下是我的账号有权限使用的操作符, 请严格按照操作符, 以及我提供的数据集, 进行生成,组合 20 个alpha:
|
|
|
|
以下是我的账号有权限使用的操作符, 请严格按照操作符, 进行生成,组合因子
|
|
|
|
========================= 操作符开始 =======================================注意: Operator: 后面的是操作符,
|
|
Description: 此字段后面的是操作符对应的描述或使用说明, Description字段后面的内容是使用说明, 不是操作符
|
|
特别注意!!!! 必须按照操作符字段Operator的使用说明生成 alphaOperator: abs(x)
|
|
Description: Absolute value of x
|
|
Operator: add(x, y, filter = false)
|
|
Description: Add all inputs (at least 2 inputs required). If filter = true, filter all input NaN to 0 before adding
|
|
Operator: densify(x)
|
|
Description: Converts a grouping field of many buckets into lesser number of only available buckets so as to make working with grouping fields computationally efficient
|
|
Operator: divide(x, y)
|
|
Description: x / y
|
|
Operator: inverse(x)
|
|
Description: 1 / x
|
|
Operator: log(x)
|
|
Description: Natural logarithm. For example: Log(high/low) uses natural logarithm of high/low ratio as stock weights.
|
|
Operator: max(x, y, ..)
|
|
Description: Maximum value of all inputs. At least 2 inputs are required
|
|
Operator: min(x, y ..)
|
|
Description: Minimum value of all inputs. At least 2 inputs are required
|
|
Operator: multiply(x ,y, ... , filter=false)
|
|
Description: Multiply all inputs. At least 2 inputs are required. Filter sets the NaN values to 1
|
|
Operator: power(x, y)
|
|
Description: x ^ y
|
|
Operator: reverse(x)
|
|
Description: - x
|
|
Operator: sign(x)
|
|
Description: if input > 0, return 1; if input < 0, return -1; if input = 0, return 0; if input = NaN, return NaN;
|
|
Operator: signed_power(x, y)
|
|
Description: x raised to the power of y such that final result preserves sign of x
|
|
Operator: sqrt(x)
|
|
Description: Square root of x
|
|
Operator: subtract(x, y, filter=false)
|
|
Description: x-y. If filter = true, filter all input NaN to 0 before subtracting
|
|
Operator: and(input1, input2)
|
|
Description: Logical AND operator, returns true if both operands are true and returns false otherwise
|
|
Operator: if_else(input1, input2, input 3)
|
|
Description: If input1 is true then return input2 else return input3.
|
|
Operator: input1 < input2
|
|
Description: If input1 < input2 return true, else return false
|
|
Operator: input1 <= input2
|
|
Description: Returns true if input1 <= input2, return false otherwise
|
|
Operator: input1 == input2
|
|
Description: Returns true if both inputs are same and returns false otherwise
|
|
Operator: input1 > input2
|
|
Description: Logic comparison operators to compares two inputs
|
|
Operator: input1 >= input2
|
|
Description: Returns true if input1 >= input2, return false otherwise
|
|
Operator: input1!= input2
|
|
Description: Returns true if both inputs are NOT the same and returns false otherwise
|
|
Operator: is_nan(input)
|
|
Description: If (input == NaN) return 1 else return 0
|
|
Operator: not(x)
|
|
Description: Returns the logical negation of x. If x is true (1), it returns false (0), and if input is false (0), it returns true (1).
|
|
Operator: or(input1, input2)
|
|
Description: Logical OR operator returns true if either or both inputs are true and returns false otherwise
|
|
Operator: days_from_last_change(x)
|
|
Description: Amount of days since last change of x
|
|
Operator: hump(x, hump = 0.01)
|
|
Description: Limits amount and magnitude of changes in input (thus reducing turnover)
|
|
Operator: kth_element(x, d, k)
|
|
Description: Returns K-th value of input by looking through lookback days. This operator can be used to backfill missing data if k=1
|
|
Operator: last_diff_value(x, d)
|
|
Description: Returns last x value not equal to current x value from last d days
|
|
Operator: ts_arg_max(x, d)
|
|
Description: Returns the relative index of the max value in the time series for the past d days. If the current day has the max value for the past d days, it returns 0. If previous day has the max value for the past d days, it returns 1
|
|
Operator: ts_arg_min(x, d)
|
|
Description: Returns the relative index of the min value in the time series for the past d days; If the current day has the min value for the past d days, it returns 0; If previous day has the min value for the past d days, it returns 1.
|
|
Operator: ts_av_diff(x, d)
|
|
Description: Returns x - tsmean(x, d), but deals with NaNs carefully. That is NaNs are ignored during mean computation
|
|
Operator: ts_backfill(x,lookback = d, k=1, ignore="NAN")
|
|
Description: Backfill is the process of replacing the NAN or 0 values by a meaningful value (i.e., a first non-NaN value)
|
|
Operator: ts_corr(x, y, d)
|
|
Description: Returns correlation of x and y for the past d days
|
|
Operator: ts_count_nans(x ,d)
|
|
Description: Returns the number of NaN values in x for the past d days
|
|
Operator: ts_covariance(y, x, d)
|
|
Description: Returns covariance of y and x for the past d days
|
|
Operator: ts_decay_linear(x, d, dense = false)
|
|
Description: Returns the linear decay on x for the past d days. Dense parameter=false means operator works in sparse mode and we treat NaN as 0. In dense mode we do not.
|
|
Operator: ts_delay(x, d)
|
|
Description: Returns x value d days ago
|
|
Operator: ts_delta(x, d)
|
|
Description: Returns x - ts_delay(x, d)
|
|
Operator: ts_mean(x, d)
|
|
Description: Returns average value of x for the past d days.
|
|
Operator: ts_product(x, d)
|
|
Description: Returns product of x for the past d days
|
|
Operator: ts_quantile(x,d, driver="gaussian" )
|
|
Description: It calculates ts_rank and apply to its value an inverse cumulative density function from driver distribution. Possible values of driver (optional ) are "gaussian", "uniform", "cauchy" distribution where "gaussian" is the default.
|
|
Operator: ts_rank(x, d, constant = 0)
|
|
Description: Rank the values of x for each instrument over the past d days, then return the rank of the current value + constant. If not specified, by default, constant = 0.
|
|
Operator: ts_regression(y, x, d, lag = 0, rettype = 0)
|
|
Description: Returns various parameters related to regression function
|
|
Operator: ts_scale(x, d, constant = 0)
|
|
Description: Returns (x - ts_min(x, d)) / (ts_max(x, d) - ts_min(x, d)) + constant. This operator is similar to scale down operator but acts in time series space
|
|
Operator: ts_std_dev(x, d)
|
|
Description: Returns standard deviation of x for the past d days
|
|
Operator: ts_step(1)
|
|
Description: Returns days' counter
|
|
Operator: ts_sum(x, d)
|
|
Description: Sum values of x for the past d days.
|
|
Operator: ts_zscore(x, d)
|
|
Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean: (x - tsmean(x,d)) / tsstddev(x,d). This operator may help reduce outliers and drawdown.
|
|
Operator: normalize(x, useStd = false, limit = 0.0)
|
|
Description: Calculates the mean value of all valid alpha values for a certain date, then subtracts that mean from each element
|
|
Operator: quantile(x, driver = gaussian, sigma = 1.0)
|
|
Description: Rank the raw vector, shift the ranked Alpha vector, apply distribution (gaussian, cauchy, uniform). If driver is uniform, it simply subtract each Alpha value with the mean of all Alpha values in the Alpha vector
|
|
Operator: rank(x, rate=2)
|
|
Description: Ranks the input among all the instruments and returns an equally distributed number between 0.0 and 1.0. For precise sort, use the rate as 0
|
|
Operator: scale(x, scale=1, longscale=1, shortscale=1)
|
|
Description: Scales input to booksize. We can also scale the long positions and short positions to separate scales by mentioning additional parameters to the operator
|
|
Operator: winsorize(x, std=4)
|
|
Description: Winsorizes x to make sure that all values in x are between the lower and upper limits, which are specified as multiple of std.
|
|
Operator: zscore(x)
|
|
Description: Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean
|
|
Operator: vec_avg(x)
|
|
Description: Taking mean of the vector field x
|
|
Operator: vec_sum(x)
|
|
Description: Sum of vector field x
|
|
Operator: bucket(rank(x), range="0, 1, 0.1" or buckets = "2,5,6,7,10")
|
|
Description: Convert float values into indexes for user-specified buckets. Bucket is useful for creating group values, which can be passed to GROUP as input
|
|
Operator: trade_when(x, y, z)
|
|
Description: Used in order to change Alpha values only under a specified condition and to hold Alpha values in other cases. It also allows to close Alpha positions (assign NaN values) under a specified condition
|
|
Operator: group_backfill(x, group, d, std = 4.0)
|
|
Description: If a certain value for a certain date and instrument is NaN, from the set of same group instruments, calculate winsorized mean of all non-NaN values over last d days
|
|
Operator: group_mean(x, weight, group)
|
|
Description: All elements in group equals to the mean
|
|
Operator: group_neutralize(x, group)
|
|
Description: Neutralizes Alpha against groups. These groups can be subindustry, industry, sector, country or a constant
|
|
Operator: group_rank(x, group)
|
|
Description: Each elements in a group is assigned the corresponding rank in this group
|
|
Operator: group_scale(x, group)
|
|
Description: Normalizes the values in a group to be between 0 and 1. (x - groupmin) / (groupmax - groupmin)
|
|
Operator: group_zscore(x, group)
|
|
Description: Calculates group Z-score - numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean. zscore = (data - mean) / stddev of x for each instrument within its group.
|
|
========================= 操作符结束 =======================================
|
|
|
|
========================= 数据字段开始 =======================================
|
|
注意: data_set_name: 后面的是数据字段(可以使用), description: 此字段后面的是数据字段对应的描述或使用说明(不能使用), description_cn字段后面的内容是中文使用说明(不能使用)
|
|
|
|
{'id': '125', 'data_set_name': 'fnd6_cisecgl', 'description': 'Comp Inc - Securities Gains/Losses', 'description_cn': '-comp_inc_securities_gains_losses'}
|
|
{'id': '239', 'data_set_name': 'fnd6_eventv110_gdwlidq', 'description': 'Impairment of Goodwill Diluted EPS Effect', 'description_cn': 'goodwill损耗后稀释每股收益影响'}
|
|
{'id': '240', 'data_set_name': 'fnd6_eventv110_gdwlieps12', 'description': 'Impairment of Goodwill Basic EPS Effect 12MM', 'description_cn': 'goodwill_impairment_basic_eps_effect_12m'}
|
|
{'id': '241', 'data_set_name': 'fnd6_eventv110_gdwliepsq', 'description': 'Impairment of Goodwill Basic EPS Effect', 'description_cn': 'goodwill impairment basic_eps_effect'}
|
|
{'id': '413', 'data_set_name': 'fnd6_newa2v1300_oiadp', 'description': 'Operating Income After Depreciation', 'description_cn': '营业净利润 after depreciation 不变,无需翻译。请提供需要翻译的专业字段名。'}
|
|
{'id': '473', 'data_set_name': 'fnd6_newqeventv110_cibegniq', 'description': 'Comp Inc - Beginning Net Income', 'description_cn': 'comp_inc_beginning_net_income'}
|
|
{'id': '510', 'data_set_name': 'fnd6_newqeventv110_gdwlamq', 'description': 'Amortization of Goodwill', 'description_cn': 'goodwill摊销'}
|
|
{'id': '511', 'data_set_name': 'fnd6_newqeventv110_gdwlia12', 'description': 'Impairments of Goodwill After-Tax - 12MM', 'description_cn': 'goodwill_减值税后_12M'}
|
|
{'id': '512', 'data_set_name': 'fnd6_newqeventv110_gdwliaq', 'description': 'Impairment of Goodwill After-tax', 'description_cn': 'goodwill_ impairment_after_tax'}
|
|
{'id': '513', 'data_set_name': 'fnd6_newqeventv110_gdwlipq', 'description': 'Impairment of Goodwill Pretax', 'description_cn': 'goodwill impairment pretax'}
|
|
{'id': '517', 'data_set_name': 'fnd6_newqeventv110_glceaq', 'description': 'Gain/Loss on Sale (Core Earnings Adjusted) After-tax', 'description_cn': '税后核心 earnings 润亏'}
|
|
{'id': '624', 'data_set_name': 'fnd6_newqeventv110_spcedq', 'description': 'S&P Core Earnings EPS Diluted', 'description_cn': 'SPCE earnings per share diluted'}
|
|
{'id': '625', 'data_set_name': 'fnd6_newqeventv110_spceeps12', 'description': 'S&P Core Earnings EPS Basic 12MM', 'description_cn': '标普核心 earnings 每股基本值_12M'}
|
|
{'id': '628', 'data_set_name': 'fnd6_newqeventv110_spceepsq', 'description': 'S&P Core Earnings EPS Basic', 'description_cn': '标普核心 earnings 每股基本值'}
|
|
{'id': '629', 'data_set_name': 'fnd6_newqeventv110_spcep12', 'description': 'S&P Core Earnings 12MM - Preliminary', 'description_cn': '标普核心 earnings 12个月 - 预liminary'}
|
|
{'id': '630', 'data_set_name': 'fnd6_newqeventv110_spcepd12', 'description': 'S&P Core Earnings 12MM EPS Diluted - Preliminary', 'description_cn': 'S&P核心 earnings_12个月稀释后每股盈亏平衡点_初步'}
|
|
{'id': '688', 'data_set_name': 'fnd6_newqv1300_ciderglq', 'description': 'Comp Inc - Derivative Gains/Losses', 'description_cn': '-comp_inc_derivative_gains_losses'}
|
|
{'id': '704', 'data_set_name': 'fnd6_newqv1300_dilavq', 'description': 'Dilution Available - Excluding Extraordinary Items', 'description_cn': '稀释潜力(非 extraordinay 项目)'}
|
|
{'id': '774', 'data_set_name': 'fnd6_newqv1300_spcedq', 'description': 'S&P Core Earnings EPS Diluted', 'description_cn': '标准普尔核心 earnings 每股稀释后利润'}
|
|
{'id': '777', 'data_set_name': 'fnd6_newqv1300_spceepsq', 'description': 'S&P Core Earnings EPS Basic', 'description_cn': '标普核心 earnings EPS 基本'}
|
|
{'id': '872', 'data_set_name': 'fnd6_spce', 'description': 'S&P Core Earnings', 'description_cn': '标准普尔核心 earnings'}
|
|
{'id': '936', 'data_set_name': 'goodwill', 'description': 'Goodwill (net)', 'description_cn': 'goodwill_净额'}
|
|
{'id': '989', 'data_set_name': 'fscore_bfl_total', 'description': 'The final score M-Score is a weighted average of both the Pentagon surface score and the Pentagon acceleration score.', 'description_cn': '最终得分M-_score=五角大楼表面评分与五角加速评分加权平均值'}
|
|
{'id': '1000', 'data_set_name': 'multi_factor_acceleration_score_derivative', 'description': 'Change in the acceleration of multi-factor score compared to previous period.', 'description_cn': '多因子评分加速度变化 Compared_to_Previous_Period_Multi_Factor_Score_Acceleration_Change'}
|
|
{'id': '1397', 'data_set_name': 'anl4_totgw_high', 'description': 'Total Goodwill - The highest estimation', 'description_cn': '总 goodwill - 最高估计值'}
|
|
{'id': '1400', 'data_set_name': 'anl4_totgw_median', 'description': 'Total Goodwill - median of estimations', 'description_cn': '总 goodwill - 估计值中位数'}
|
|
{'id': '1672', 'data_set_name': 'total_goodwill_amount', 'description': 'Total Goodwill - Value', 'description_cn': '总 goodwill - 值'}
|
|
{'id': '2354', 'data_set_name': 'fn_comp_not_rec_a', 'description': 'Unrecognized cost of unvested share-based compensation awards.', 'description_cn': '未兑现股份薪酬 award 的 unrecognized cost'}
|
|
========================= 数据字段结束 =======================================
|
|
|
|
以上数据字段和操作符, 按照Description说明组合, 但是每一个 alpha 组合的使用的数据字段和操作符不要过于集中, 在符合语法的情况下, 多尝试不同的组合 |