You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
AlphaGenerator/prepare_prompt/alpha_prompt.txt

42 lines
4.1 KiB

Liquidity Stratification Pricing Factor
Hypothesis
During periods of liquidity tightening or market stress, investors' preference for asset liquidity increases sharply, leading to an intensified phenomenon of liquidity stratification. High-liquidity stocks experience relatively smaller declines due to a "liquidity premium," while low-liquidity stocks are sold off significantly due to a "liquidity discount." When market stress eases and the liquidity environment shifts towards easing, previously overly discounted low-liquidity stocks often exhibit stronger mean reversion and generate more substantial rebounds. Conversely, in the initial phase of a shift from loose to tight market liquidity, high-liquidity stocks may demonstrate stronger defensive characteristics.
Implementation Plan
Construct a comprehensive liquidity measurement indicator incorporating trading volume, turnover rate, bid-ask spread, and the Amihud illiquidity ratio. Use a time-series market regime identification operator (e.g., based on thresholds for market breadth, monetary conditions index, or volatility index VIX) to determine the prevailing "liquidity regime" of the market. During phases identified as a transition from "tight" to "easy," apply positive weights to the portfolio of stocks with the worst prior liquidity (bottom 20% based on the composite indicator). In the initial phase of liquidity "tightening," apply positive weights to the portfolio of stocks with the best liquidity (top 20%). Utilize cross-sectional ranking and group assignment to construct the investment portfolio.
Alpha Factor Optimization Suggestions
Pure liquidity metrics can be strongly influenced by firm market capitalization and industry attributes. A two-step neutralization process is recommended: First, perform liquidity ranking within industries to eliminate differences in industry trading characteristics. Second, after factor construction, control for exposure to the size factor. Furthermore, introducing the "duration of liquidity shock" as a weighting parameter could help refine the strategy. Stocks that have endured liquidity pressure for a longer period could be assigned higher weights during the reversal phase to more precisely capture the rebound momentum following suppression.
*=========================================================================================*
输出格式:
输出必须是且仅是纯文本。
每一行是一个完整、独立、语法正确的WebSim表达式。
严禁任何形式的解释、编号、标点包裹(如引号)、Markdown格式或额外文本。
===================== !!! 重点(输出方式) !!! =====================
现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。
不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合
**输出格式**(一行一个表达式, 每个表达式中间需要添加一个空行, 只要表达式本身, 不需要赋值, 不要解释, 不需要序号, 也不要输出多余的东西):
表达式
表达式
表达式
...
表达式
=================================================================
重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。
以下是我的账号有权限使用的操作符, 请严格按照操作符, 以及我提供的数据集, 进行生成,组合 30 个alpha:
不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合
=================================================================
ts_product ts_zscore ts_mean ts_scale add sign subtract ts_delta ts_rank greater ts_av_diff ts_quantile ts_count_nans ts_covariance
ts_arg_min divide ts_corr multiply if_else ts_sum ts_delay group_zscore ts_arg_max ts_std_de ts_backfill
以上这些操作符不能传入事件类型的数据集, 只能传入时间序列数据集, 不能传入事件数据,不能传入事件数据,不能传入事件数据