You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
AlphaGenerator/prepare_prompt/alpha_prompt.txt

53 lines
5.4 KiB

跨境技术溢出效应
假设
在全球化产业链中,若一家公司的海外主要客户或供应商拥有强大的技术创新能力(如高研发投入、高专利质量),则该公司可能通过业务关联,获得隐性的知识外溢与技术扩散益处。这种“技术溢出”能提升该公司的运营效率、产品竞争力或降低其研发风险,从而可能在未来转化为超预期的盈利增长与估值提升。市场对这类隐含的、非线性的增长期权可能存在定价不足。
实施方案
构建“技术关联强度”因子。识别公司年报或供应链数据中披露的前五大海外客户/供应商,并获取这些关联实体的公开技术创新指标(如人均专利引用量、研发费用增速)。使用加权平均算子,依据交易金额占比为权重,计算公司所关联的海外实体的整体技术强度。使用时序滞后算子,将技术强度数据滞后6-12个月以匹配技术吸收与转化周期,再通过横截面排名评估公司在全市场中的相对技术关联优势。
阿尔法因子优化建议
技术溢出的效果受公司自身“吸收能力”调节。建议引入公司自身的研发团队质量(如技术人员占比)、内部研发投入强度作为调节变量,通过交互项算子或条件分层处理(例如,仅在自身研发投入超过行业平均的公司样本中,技术关联强度因子才被启用),以更精准地捕捉那些既拥有外部技术源头、又有能力内部化的优质标的。
Cross-Border Technology Spillover Effect
Hypothesis
In the global industrial chain, if a company's key overseas customers or suppliers possess strong technological innovation capabilities (e.g., high R&D investment, high patent quality), the company may benefit from implicit knowledge spillover and technology diffusion through these business linkages. This "technology spillover" can enhance the company's operational efficiency, product competitiveness, or reduce its R&D risks, potentially translating into unexpected profit growth and valuation appreciation in the future. The market may underprice this implicit, non-linear growth option.
Implementation Plan
Construct a "Technology Linkage Intensity" factor. Identify the top five overseas customers/suppliers disclosed in the company's annual reports or supply chain data, and obtain public technological innovation metrics for these linked entities (e.g., patent citations per capita, R&D expense growth rate). Use a weighted average operator, with transaction amount proportion as weights, to calculate the aggregated technological strength of the overseas entities linked to the company. Apply a time-series lag operator to lag the technology strength data by 6-12 months to account for technology absorption and conversion cycles, then assess the company's relative technological linkage advantage across the market via cross-sectional ranking.
Alpha Factor Optimization Suggestion
The effect of technology spillover is moderated by the company's own "absorptive capacity." It is suggested to introduce the quality of the company's own R&D team (e.g., proportion of technical staff) and internal R&D intensity as moderating variables. Through interaction term operators or conditional stratification (e.g., enabling the Technology Linkage Intensity factor only within the subsample of companies whose own R&D investment exceeds the industry average), the factor can more precisely identify high-quality targets that possess both external technology sources and the internal capability to assimilate them.
*=========================================================================================*
输出格式:
输出必须是且仅是纯文本。
每一行是一个完整、独立、语法正确的WebSim表达式。
严禁任何形式的解释、编号、标点包裹(如引号)、Markdown格式或额外文本。
===================== !!! 重点(输出方式) !!! =====================
现在,请严格遵守以上所有规则,开始生成可立即在WebSim中运行的复合因子表达式。
不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合
**输出格式**(一行一个表达式, 每个表达式中间需要添加一个空行, 只要表达式本身, 不需要赋值, 不要解释, 不需要序号, 也不要输出多余的东西):
表达式
表达式
表达式
...
表达式
=================================================================
重申:请确保所有表达式都使用WorldQuant WebSim平台函数,不要使用pandas、numpy或其他Python库函数。输出必须是一行有效的WQ表达式。
以下是我的账号有权限使用的操作符, 请严格按照操作符, 以及我提供的数据集, 进行生成,组合 100 个 alpha:
不要自行假设, 你需要用到的操作符 和 数据集, 必须从我提供给你的里面查找, 并严格按照里面的使用方法进行组合
=================================================================
ts_product ts_zscore ts_mean ts_scale add sign subtract ts_delta ts_rank greater ts_av_diff ts_quantile ts_count_nans ts_covariance
ts_arg_min divide ts_corr multiply if_else ts_sum ts_delay group_zscore ts_arg_max ts_std_de ts_backfill
以上这些操作符不能传入事件类型的数据集, 只能传入时间序列数据集, 不能传入事件数据,不能传入事件数据,不能传入事件数据