You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
FactorSimulator/main_bak.py

496 lines
20 KiB

import os.path
import httpx
import json
from httpx import BasicAuth
import time
from random import uniform
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
class WorldQuantBrainSimulate:
def __init__(self, credentials_file='account.txt'):
self.credentials_file = credentials_file
self.client = None
self.brain_api_url = 'https://api.worldquantbrain.com'
"""读取本地账号密码"""
def load_credentials(self):
if not os.path.exists(self.credentials_file):
print("未找到 account.txt 文件")
with open(self.credentials_file, 'w') as f: f.write("")
print("account.txt 文件已创建,请填写账号密码, 格式: ['username', 'password]")
exit(1)
with open(self.credentials_file) as f:
credentials = eval(f.read())
return credentials[0], credentials[1]
"""登录认证"""
def login(self):
username, password = self.load_credentials()
self.client = httpx.Client(auth=BasicAuth(username, password))
response = self.client.post(f'{self.brain_api_url}/authentication')
print(f"登录状态: {response.status_code}")
if response.status_code == 201:
print("登录成功!")
return True
else:
print(f"登录失败: {response.json()}")
return False
"""模拟Alpha因子"""
def simulate_alpha(self, expression, settings=None):
if self.client is None:
raise Exception("请先登录")
default_settings = {
'instrumentType': 'EQUITY',
'region': 'USA',
'universe': 'TOP3000',
'delay': 1,
'decay': 0,
'neutralization': 'INDUSTRY',
'truncation': 0.08,
'pasteurization': 'ON',
'unitHandling': 'VERIFY',
'nanHandling': 'OFF',
'language': 'FASTEXPR',
'visualization': False,
}
if settings:
default_settings.update(settings)
simulation_data = {
'type': 'REGULAR',
'settings': default_settings,
'regular': expression
}
sim_resp = self.client.post(f'{self.brain_api_url}/simulations', json=simulation_data)
print(f"模拟提交状态: {sim_resp.status_code}")
sim_progress_url = sim_resp.headers['location']
print(f"进度URL: {sim_progress_url}")
while True:
sim_progress_resp = self.client.get(sim_progress_url)
retry_after_sec = float(sim_progress_resp.headers.get("Retry-After", 0))
if retry_after_sec == 0:
break
print(sim_progress_resp.json())
print(f"等待 {retry_after_sec} 秒...")
time.sleep(retry_after_sec)
# 如果因子模拟不通过, 获取一下失败信息
if sim_progress_resp.json()["status"] == "ERROR":
result = sim_progress_resp.json()["message"]
print(f"因子模拟失败: {result}")
# 返回一个特殊标识,表示模拟失败
return {"status": "error", "message": result}
alpha_id = sim_progress_resp.json()["alpha"]
print(f"生成的Alpha ID: {alpha_id}")
# 获取详细的性能指标
metrics = self.get_alpha_metrics(alpha_id)
return {"status": "success", "alpha_id": alpha_id, "metrics": metrics}
"""获取Alpha因子的详细指标"""
def get_alpha_metrics(self, alpha_id):
if self.client is None:
raise Exception("请先登录")
try:
# 获取Alpha的基本信息和指标
alpha_url = f'{self.brain_api_url}/alphas/{alpha_id}'
alpha_resp = self.client.get(alpha_url)
if alpha_resp.status_code in [200, 201]:
alpha_data = alpha_resp.json()
return self._parse_alpha_metrics(alpha_data)
else:
return {"error": f"无法获取Alpha信息: {alpha_resp.status_code}"}
except Exception as e:
return {"error": f"获取指标时出错: {str(e)}"}
"""解析Alpha数据,提取关键指标"""
def _parse_alpha_metrics(self, alpha_data):
metrics = {}
try:
# 从train字段获取指标数据
if 'train' in alpha_data and alpha_data['train']:
train_data = alpha_data['train']
metrics.update({
'sharpe_ratio': train_data.get('sharpe', None),
'annual_return': train_data.get('returns', None),
'max_drawdown': train_data.get('drawdown', None),
'turnover': train_data.get('turnover', None),
'fitness': train_data.get('fitness', None),
'pnl': train_data.get('pnl', None),
'book_size': train_data.get('bookSize', None),
'long_count': train_data.get('longCount', None),
'short_count': train_data.get('shortCount', None),
'margin': train_data.get('margin', None),
'start_date': train_data.get('startDate', None),
})
# 从is字段获取样本内测试数据
if 'is' in alpha_data and alpha_data['is']:
is_data = alpha_data['is']
metrics.update({
'is_sharpe': is_data.get('sharpe', None),
'is_returns': is_data.get('returns', None),
'is_drawdown': is_data.get('drawdown', None),
'is_turnover': is_data.get('turnover', None),
'is_fitness': is_data.get('fitness', None),
'is_pnl': is_data.get('pnl', None),
})
# 从test字段获取样本外测试数据
if 'test' in alpha_data and alpha_data['test']:
test_data = alpha_data['test']
metrics.update({
'test_sharpe': test_data.get('sharpe', None),
'test_returns': test_data.get('returns', None),
'test_drawdown': test_data.get('drawdown', None),
'test_turnover': test_data.get('turnover', None),
'test_fitness': test_data.get('fitness', None),
'test_pnl': test_data.get('pnl', None),
})
# 其他重要信息
metrics.update({
'alpha_id': alpha_data.get('id', None),
'grade': alpha_data.get('grade', None),
'stage': alpha_data.get('stage', None),
'status': alpha_data.get('status', None),
'date_created': alpha_data.get('dateCreated', None),
})
# 解析检查结果
if 'is' in alpha_data and 'checks' in alpha_data['is']:
checks = alpha_data['is']['checks']
check_results = {}
for check in checks:
check_name = check.get('name', '')
result = check.get('result', '')
value = check.get('value', None)
check_results[check_name.lower()] = {
'result': result,
'value': value,
'limit': check.get('limit', None)
}
metrics['checks'] = check_results
except Exception as e:
metrics['error'] = f"解析指标时出错: {str(e)}"
return metrics
def close(self):
"""关闭连接"""
if self.client:
self.client.close()
class AlphaSimulationManager:
def __init__(self, credentials_file='account.txt'):
self.credentials_file = credentials_file
self.results = []
"""将秒数格式化为 xx分xx秒 格式"""
def format_time(self, seconds):
if seconds < 60:
return f"{seconds:.2f}"
else:
minutes = int(seconds // 60)
remaining_seconds = seconds % 60
return f"{minutes}{remaining_seconds:.2f}"
"""模拟单个Alpha因子(线程安全)"""
def simulate_single_alpha(self, api, expression, settings=None):
alpha_start_time = time.time()
try:
# 模拟Alpha因子
simulation_result = api.simulate_alpha(expression, settings)
alpha_end_time = time.time()
time_consuming = alpha_end_time - alpha_start_time
# 根据模拟结果类型处理
if simulation_result["status"] == "success":
# 模拟成功的结果
result = {
"expression": expression,
"time_consuming": time_consuming,
"formatted_time": self.format_time(time_consuming),
"alpha_id": simulation_result["alpha_id"],
"status": "success",
"description": "/",
"simulation_timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
# 训练集指标
"train_metrics": {
"sharpe_ratio": simulation_result["metrics"].get('sharpe_ratio'),
"annual_return": simulation_result["metrics"].get('annual_return'),
"max_drawdown": simulation_result["metrics"].get('max_drawdown'),
"turnover": simulation_result["metrics"].get('turnover'),
"fitness": simulation_result["metrics"].get('fitness'),
"pnl": simulation_result["metrics"].get('pnl'),
"book_size": simulation_result["metrics"].get('book_size'),
"long_count": simulation_result["metrics"].get('long_count'),
"short_count": simulation_result["metrics"].get('short_count'),
"margin": simulation_result["metrics"].get('margin'),
},
# 样本内测试指标
"is_metrics": {
"sharpe_ratio": simulation_result["metrics"].get('is_sharpe'),
"annual_return": simulation_result["metrics"].get('is_returns'),
"max_drawdown": simulation_result["metrics"].get('is_drawdown'),
"turnover": simulation_result["metrics"].get('is_turnover'),
"fitness": simulation_result["metrics"].get('is_fitness'),
"pnl": simulation_result["metrics"].get('is_pnl'),
},
# 样本外测试指标
"test_metrics": {
"sharpe_ratio": simulation_result["metrics"].get('test_sharpe'),
"annual_return": simulation_result["metrics"].get('test_returns'),
"max_drawdown": simulation_result["metrics"].get('test_drawdown'),
"turnover": simulation_result["metrics"].get('test_turnover'),
"fitness": simulation_result["metrics"].get('test_fitness'),
"pnl": simulation_result["metrics"].get('test_pnl'),
},
# 其他信息
"alpha_info": {
"grade": simulation_result["metrics"].get('grade'),
"stage": simulation_result["metrics"].get('stage'),
"status": simulation_result["metrics"].get('status'),
"date_created": simulation_result["metrics"].get('date_created'),
"checks": simulation_result["metrics"].get('checks', {})
}
}
print(f"✓ 因子模拟成功: {expression}")
print(f" 耗时: {self.format_time(time_consuming)},Alpha ID: {simulation_result['alpha_id']}")
# 打印关键指标
self._print_success_metrics(simulation_result["metrics"])
else:
# 模拟失败的结果(API返回的错误)
result = {
"expression": expression,
"time_consuming": time_consuming,
"formatted_time": self.format_time(time_consuming),
"alpha_id": "/",
"status": "error",
"description": simulation_result["message"],
"simulation_timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"performance_metrics": {},
"risk_metrics": {},
"quantile_metrics": {},
"other_metrics": {}
}
print(f"✗ 因子模拟失败: {expression}")
print(f" 耗时: {self.format_time(time_consuming)},错误: {simulation_result['message']}")
except Exception as e:
# 其他异常情况
alpha_end_time = time.time()
time_consuming = alpha_end_time - alpha_start_time
result = {
"expression": expression,
"time_consuming": time_consuming,
"formatted_time": self.format_time(time_consuming),
"alpha_id": "/",
"status": "failed",
"description": str(e),
"simulation_timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"performance_metrics": {},
"risk_metrics": {},
"quantile_metrics": {},
"other_metrics": {}
}
print(f"✗ 因子模拟异常: {expression}")
print(f" 耗时: {self.format_time(time_consuming)},异常: {str(e)}")
return result
"""打印成功因子的关键指标"""
def _print_success_metrics(self, metrics):
if 'error' in metrics:
print(f" 指标获取错误: {metrics['error']}")
return
print(" 关键指标 (训练集):")
key_metrics = [
('夏普比率', 'sharpe_ratio'),
('年化收益', 'annual_return'),
('最大回撤', 'max_drawdown'),
('换手率', 'turnover'),
('适应度', 'fitness'),
('PNL', 'pnl'),
]
for chinese_name, metric_key in key_metrics:
value = metrics.get(metric_key)
if value is not None:
if isinstance(value, float):
value = f"{value:.4f}"
print(f" {chinese_name}: {value}")
# 显示样本外测试的夏普比率(如果存在)
test_sharpe = metrics.get('test_sharpe')
if test_sharpe is not None:
print(f" 样本外夏普比率: {test_sharpe:.4f}")
"""模拟一批Alpha因子(3个一组)"""
def simulate_alpha_batch(self, alpha_batch, batch_number):
print(f"\n{'=' * 60}")
print(f"开始第 {batch_number} 批因子模拟 (共 {len(alpha_batch)} 个因子)")
print(f"因子列表: {alpha_batch}")
print(f"{'=' * 60}")
batch_start_time = time.time()
batch_results = []
# 创建API客户端实例(每个线程独立的客户端)
api = WorldQuantBrainSimulate(self.credentials_file)
try:
if api.login():
# 使用线程池执行3个因子的模拟
with ThreadPoolExecutor(max_workers=3) as executor:
# 提交所有任务
future_to_alpha = {executor.submit(self.simulate_single_alpha, api, alpha): alpha for alpha in alpha_batch}
# 等待所有任务完成
for future in as_completed(future_to_alpha):
alpha = future_to_alpha[future]
try:
result = future.result()
batch_results.append(result)
except Exception as e:
print(f"因子 {alpha} 执行异常: {e}")
except Exception as e:
print(f"{batch_number} 批模拟过程中出错: {e}")
finally:
api.close()
batch_end_time = time.time()
batch_total_time = batch_end_time - batch_start_time
print(f"\n{batch_number} 批模拟完成!")
print(f"本批总耗时: {self.format_time(batch_total_time)}")
print(f"{'=' * 60}")
return batch_results
"""运行批量模拟"""
def run_simulation(self, alpha_list, batch_size=3):
print("开始Alpha因子批量模拟...")
total_start_time = time.time()
# 将因子列表分成每批3个
batches = [alpha_list[i:i + batch_size] for i in range(0, len(alpha_list), batch_size)]
all_results = []
for i, batch in enumerate(batches, 1):
# 模拟当前批次
batch_results = self.simulate_alpha_batch(batch, i)
all_results.extend(batch_results)
# 如果不是最后一批,则等待3-5秒
if i < len(batches):
sleep_time = uniform(3, 5)
print(f"\n等待 {sleep_time:.2f} 秒后开始下一批...")
time.sleep(sleep_time)
total_end_time = time.time()
total_time = total_end_time - total_start_time
# 输出最终结果汇总
self.print_summary(all_results, total_time)
# 保存结果到文件
self.save_results(all_results)
return all_results
"""打印结果汇总"""
def print_summary(self, results, total_time):
print(f"\n{'=' * 60}")
print("模拟结果汇总")
print(f"{'=' * 60}")
success_count = sum(1 for r in results if r['status'] == 'success')
error_count = sum(1 for r in results if r['status'] == 'error')
failed_count = sum(1 for r in results if r['status'] == 'failed')
print(f"总模拟因子数: {len(results)}")
print(f"成功: {success_count}")
print(f"模拟错误: {error_count}")
print(f"执行异常: {failed_count}")
print(f"总耗时: {self.format_time(total_time)}")
print(f"{'=' * 60}")
for i, result in enumerate(results, 1):
status_icon = "" if result['status'] == 'success' else ""
print(f"{i}. {status_icon} {result['expression']}")
print(f" 状态: {result['status']}")
print(f" 耗时: {result['formatted_time']}")
print(f" Alpha ID: {result['alpha_id']}")
if result['status'] != 'success':
print(f" 原因: {result['description']}")
print()
"""保存结果到文件"""
def save_results(self, results):
# 转换为可序列化的格式
serializable_results = []
for result in results:
serializable_result = result.copy()
serializable_result['time_consuming'] = round(serializable_result['time_consuming'], 2)
# 处理metrics中的浮点数,保留6位小数
for metric_category in ['performance_metrics', 'risk_metrics', 'quantile_metrics', 'other_metrics']:
if metric_category in serializable_result:
for key, value in serializable_result[metric_category].items():
if isinstance(value, float):
serializable_result[metric_category][key] = round(value, 6)
serializable_results.append(serializable_result)
# 将日志文件, 保存到当前目录下, result 文件夹中
if not os.path.exists('./result'):
os.makedirs('./result')
result_name = f"result/simulation_results-{str(int(time.time()))}.json"
with open(result_name, 'w', encoding='utf-8') as f:
json.dump(serializable_results, f, ensure_ascii=False, indent=2)
print(f"结果已保存到 {result_name}")
if __name__ == "__main__":
# 待模拟因子列表
with open('alpha.txt', 'r', encoding='utf-8') as file:
alpha_list = [line.strip() for line in file]
if not alpha_list:
print("alpha.txt 文件不存在")
with open('alpha.txt', 'w', encoding='utf-8') as file: file.write("")
print("已创建 alpha.txt 文件, 请添加因子后重新运行, 一行一个因子")
exit(1)
# 创建模拟管理器并运行
manager = AlphaSimulationManager()
results = manager.run_simulation(alpha_list, batch_size=3)