Jack 1 month ago
parent 51a483ce22
commit 2950e9d2ce
  1. 0
      generated_alpha/2025/2025-12-02/164547.txt
  2. 0
      generated_alpha/2025/2025-12-02/175402.txt
  3. 0
      generated_alpha/2025/2025-12-03/084615.txt
  4. 0
      generated_alpha/2025/2025-12-03/101800.txt
  5. 0
      generated_alpha/2025/2025-12-03/141439.txt
  6. 0
      generated_alpha/2025/2025-12-04/103341.txt
  7. 0
      generated_alpha/2025/2025-12-08/081835.txt
  8. 0
      generated_alpha/2025/2025-12-08/090705.txt
  9. 0
      generated_alpha/2025/2025-12-08/092309.txt
  10. 0
      generated_alpha/2025/2025-12-08/095105.txt
  11. 0
      generated_alpha/2025/2025-12-08/100004.txt
  12. 0
      generated_alpha/2025/2025-12-09/094337.txt
  13. 0
      generated_alpha/2025/2025-12-11/173635.txt
  14. 0
      generated_alpha/2025/2025-12-11/175755.txt
  15. 0
      generated_alpha/2025/2025-12-12/154831.txt
  16. 0
      generated_alpha/2025/2025-12-12/155502.txt
  17. 0
      generated_alpha/2025/2025-12-12/155552.txt
  18. 0
      generated_alpha/2025/2025-12-12/161043.txt
  19. 0
      generated_alpha/2025/2025-12-13/162739.txt
  20. 0
      generated_alpha/2025/2025-12-13/163313.txt
  21. 0
      generated_alpha/2025/2025-12-13/163351.txt
  22. 0
      generated_alpha/2025/2025-12-13/163500.txt
  23. 0
      generated_alpha/2025/2025-12-13/163835.txt
  24. 0
      generated_alpha/2025/2025-12-15/104029.txt
  25. 0
      generated_alpha/2025/2025-12-15/104255.txt
  26. 0
      generated_alpha/2025/2025-12-15/104334.txt
  27. 0
      generated_alpha/2025/2025-12-15/104435.txt
  28. 0
      generated_alpha/2025/2025-12-15/104756.txt
  29. 0
      generated_alpha/2025/2025-12-16/110013.txt
  30. 0
      generated_alpha/2025/2025-12-16/110049.txt
  31. 0
      generated_alpha/2025/2025-12-16/110056.txt
  32. 0
      generated_alpha/2025/2025-12-16/110120.txt
  33. 0
      generated_alpha/2025/2025-12-16/110532.txt
  34. 0
      generated_alpha/2025/2025-12-17/105528.txt
  35. 0
      generated_alpha/2025/2025-12-17/105621.txt
  36. 0
      generated_alpha/2025/2025-12-17/105631.txt
  37. 0
      generated_alpha/2025/2025-12-17/105652.txt
  38. 0
      generated_alpha/2025/2025-12-17/110226.txt
  39. 0
      generated_alpha/2025/2025-12-18/091435.txt
  40. 0
      generated_alpha/2025/2025-12-18/091648.txt
  41. 0
      generated_alpha/2025/2025-12-18/091701.txt
  42. 0
      generated_alpha/2025/2025-12-18/091708.txt
  43. 0
      generated_alpha/2025/2025-12-18/091952.txt
  44. 0
      generated_alpha/2025/2025-12-19/111037.txt
  45. 0
      generated_alpha/2025/2025-12-19/111515.txt
  46. 0
      generated_alpha/2025/2025-12-19/111531.txt
  47. 0
      generated_alpha/2025/2025-12-19/111603.txt
  48. 0
      generated_alpha/2025/2025-12-22/154449.txt
  49. 0
      generated_alpha/2025/2025-12-22/154806.txt
  50. 0
      generated_alpha/2025/2025-12-22/154829.txt
  51. 0
      generated_alpha/2025/2025-12-22/154934.txt
  52. 0
      generated_alpha/2025/2025-12-22/155207.txt
  53. 0
      generated_alpha/2025/2025-12-23/161653.txt
  54. 0
      generated_alpha/2025/2025-12-24/185241.txt
  55. 0
      generated_alpha/2025/2025-12-25/155254.txt
  56. 0
      generated_alpha/2025/2025-12-25/155311.txt
  57. 0
      generated_alpha/2025/2025-12-25/165218.txt
  58. 0
      generated_alpha/2025/2025-12-25/165514.txt
  59. 0
      generated_alpha/2025/2025-12-28/154826.txt
  60. 0
      generated_alpha/2025/2025-12-28/154918.txt
  61. 0
      generated_alpha/2025/2025-12-28/195436.txt
  62. 0
      generated_alpha/2025/2025-12-28/195522.txt
  63. 0
      generated_alpha/2025/2025-12-29/102728.txt
  64. 0
      generated_alpha/2025/2025-12-29/151730.txt
  65. 0
      generated_alpha/2025/2025-12-30/153523.txt
  66. 0
      generated_alpha/2025/2025-12-31/153508.txt
  67. 0
      generated_alpha/2026/01/01/161032.txt
  68. 0
      generated_alpha/2026/01/01/161057.txt
  69. 0
      generated_alpha/2026/01/01/164625.txt
  70. 0
      generated_alpha/2026/01/01/164654.txt
  71. 0
      generated_alpha/2026/01/02/173513.txt
  72. 39
      generated_alpha/2026/01/03/162703.txt
  73. 39
      generated_alpha/2026/01/03/162729.txt
  74. 25
      generated_alpha/2026/01/04/093236.txt
  75. 39
      generated_alpha/2026/01/04/093304.txt
  76. 20
      generated_alpha/2026/01/04/153654.txt
  77. 39
      generated_alpha/2026/01/04/153729.txt
  78. 39
      generated_alpha/2026/01/04/161557.txt
  79. 39
      generated_alpha/2026/01/04/161726.txt
  80. 46
      main.py
  81. 0
      manual_prompt/2025/manual_prompt_20251212140534.txt
  82. 0
      manual_prompt/2025/manual_prompt_20251212150134.txt
  83. 0
      manual_prompt/2025/manual_prompt_20251212154430.txt
  84. 0
      manual_prompt/2025/manual_prompt_20251213162426.txt
  85. 0
      manual_prompt/2025/manual_prompt_20251213162445.txt
  86. 0
      manual_prompt/2025/manual_prompt_20251215103723.txt
  87. 0
      manual_prompt/2025/manual_prompt_20251216105934.txt
  88. 0
      manual_prompt/2025/manual_prompt_20251217105447.txt
  89. 0
      manual_prompt/2025/manual_prompt_20251217105528.txt
  90. 0
      manual_prompt/2025/manual_prompt_20251217105621.txt
  91. 0
      manual_prompt/2025/manual_prompt_20251217105631.txt
  92. 0
      manual_prompt/2025/manual_prompt_20251217105652.txt
  93. 0
      manual_prompt/2025/manual_prompt_20251218091404.txt
  94. 0
      manual_prompt/2025/manual_prompt_20251218091436.txt
  95. 0
      manual_prompt/2025/manual_prompt_20251218091649.txt
  96. 0
      manual_prompt/2025/manual_prompt_20251218091701.txt
  97. 0
      manual_prompt/2025/manual_prompt_20251218091709.txt
  98. 0
      manual_prompt/2025/manual_prompt_20251219111002.txt
  99. 0
      manual_prompt/2025/manual_prompt_20251219111038.txt
  100. 0
      manual_prompt/2025/manual_prompt_20251219111516.txt
  101. Some files were not shown because too many files have changed in this diff Show More

@ -0,0 +1,39 @@
multiply(ts_delta(divide(fn_treasury_stock_shares_a, ts_mean(fn_treasury_stock_shares_a, 60)), 10), ts_rank(ts_zscore(nws12_allz_result2, 20), 100))
subtract(group_rank(ts_mean(fnd2_a_frtandfixturesg, 30), pv13_h_min2_focused_sector), rank(ts_delta(nws12_mainz_tonhigh, 5)))
multiply(ts_av_diff(fn_def_tax_assets_liab_net_q, 40), power(ts_corr(fn_liab_fair_val_a, nws12_afterhsz_tonhigh, 20), 2))
add(ts_scale(ts_sum(news_max_up_amt, 10), 5), reverse(ts_regression(fn_comp_not_rec_stock_options_q, fscore_bfl_total, 30, 0, 0)))
if_else(ts_arg_min(fn_def_tax_liab_a, 15) > 5, ts_backfill(multi_factor_acceleration_score_derivative, 8), ts_delay(nws18_sse, 3))
group_neutralize(ts_rank(ts_decay_linear(rp_nip_ratings, 10), pv13_h_min52_1k_sector), pv13_h_min24_500_sector)
multiply(sign(ts_delta(anl4_netdebt_flag, 8)), sqrt(ts_count_nans(fn_comp_not_rec_stock_options_a, 25)))
subtract(ts_mean(group_zscore(fnd2_a_frtandfixturesg, pv13_h_min22_1000_sector), 20), ts_quantile(news_max_up_amt, 15))
add(ts_step(1), multiply(ts_covariance(nws12_allz_result2, fn_treasury_stock_shares_a, 30), hump(ts_std_dev(fscore_bfl_total, 10))))
if_else(ts_breakout(fn_def_tax_assets_liab_net_q, 8) > 0.15, reverse(ts_zscore(fn_liab_fair_val_a, 20)), ts_mean(rp_nip_ratings, 10))
multiply(ts_backfill(fn_comp_not_rec_stock_options_q, 5), power(ts_rank(ts_delay(nws18_sse, 2), 50), ts_arg_max(fn_def_tax_liab_a, 12)))
group_scale(ts_sum(ts_av_diff(multi_factor_acceleration_score_derivative, 15), pv13_h_min2_1k_sector), pv13_h_min2_focused_sector)
subtract(ts_product(ts_delta(anl4_netdebt_flag, 6), 10), rank(ts_corr(nws12_mainz_tonhigh, news_max_up_amt, 25)))
add(zscore(ts_mean(fnd2_a_frtandfixturesg, 40)), ts_scale(ts_rank(ts_decay_linear(fscore_bfl_total, 8), 60), 2))
multiply(signed_power(ts_regression(fn_treasury_stock_shares_a, nws12_afterhsz_tonhigh, 20, 0, 1), 0.5), group_mean(ts_zscore(rp_nip_ratings, 15), 1, pv13_h_min24_500_sector))
if_else(ts_count_nans(fn_liab_fair_val_a, 10) < 5, ts_sum(ts_delta(fn_comp_not_rec_stock_options_a, 4), 8), reverse(ts_mean(nws12_allz_result2, 15)))
subtract(ts_rank(ts_std_dev(multi_factor_acceleration_score_derivative, 20), 30), quantile(ts_backfill(anl4_netdebt_flag, 12)))
multiply(ts_delay(ts_covariance(fn_def_tax_assets_liab_net_q, nws18_sse, 18), 2), sqrt(ts_scale(ts_sum(fnd2_a_frtandfixturesg, 10), 3)))
add(group_zscore(ts_mean(fn_treasury_stock_shares_a, 25), pv13_h_min52_1k_sector), power(ts_av_diff(rp_nip_ratings, 12), 2))
subtract(ts_quantile(ts_delta(news_max_up_amt, 6), 15), rank(ts_breakout(fn_comp_not_rec_stock_options_q, 8)))

@ -0,0 +1,39 @@
ts_delta(divide(fn_def_tax_assets_liab_net_q, add(fn_def_tax_assets_liab_net_q, fn_def_tax_liab_a)), 8)
ts_rank(ts_delta(fn_liab_fair_val_a, 4), 20)
group_zscore(ts_sum(fn_comp_not_rec_stock_options_a, 12), pv13_h_min2_focused_sector)
ts_mean(ts_delta(fn_treasury_stock_shares_a, 4), 8)
ts_corr(ts_delay(fn_def_tax_liab_a, 4), ts_delta(fn_def_tax_assets_liab_net_q, 4), 12)
ts_scale(ts_delta(fn_comp_not_rec_stock_options_q, 8), 16)
group_neutralize(ts_zscore(fn_liab_fair_val_a, 20), pv13_h_min52_1k_sector)
ts_regression(fn_def_tax_assets_liab_net_q, ts_delay(fn_def_tax_liab_a, 4), 12, 0, 0)
ts_av_diff(ts_delay(fn_comp_not_rec_stock_options_a, 2), 8)
ts_quantile(ts_delta(fn_treasury_stock_shares_a, 4), 12, "uniform")
ts_std_dev(ts_delta(fn_def_tax_assets_liab_net_q, 4), 8)
group_rank(ts_sum(fn_liab_fair_val_a, 4), pv13_h_min24_500_sector)
ts_decay_linear(ts_delta(fn_def_tax_liab_a, 4), 12, false)
ts_product(ts_arg_max(fn_comp_not_rec_stock_options_q, 12), 4)
ts_count_nans(ts_delta(fn_treasury_stock_shares_a, 4), 8)
ts_covariance(fn_def_tax_assets_liab_net_q, fn_def_tax_liab_a, 12)
ts_step(1)
ts_backfill(ts_delta(fn_liab_fair_val_a, 4), 8, 1, "NAN")
ts_rank(ts_mean(ts_delta(fn_comp_not_rec_stock_options_a, 4), 4), 20)
group_scale(ts_delta(fn_def_tax_assets_liab_net_q, 8), pv13_h_min22_1000_sector)

@ -0,0 +1,25 @@
reverse(ts_delta(customer_acquisition_cost, 63))
multiply(ts_delta(customer_acquisition_cost, 63), reverse(ts_mean(customer_acquisition_cost, 126)))
divide(ts_delta(customer_acquisition_cost, 63), ts_std_dev(customer_acquisition_cost, 126))
subtract(ts_delta(customer_acquisition_cost, 63), ts_mean(customer_acquisition_cost, 252))
if_else(ts_delta(customer_acquisition_cost, 63) > multiply(ts_mean(customer_acquisition_cost, 126), 1.2), -1, ts_delta(customer_acquisition_cost, 63))
multiply(ts_delta(customer_acquisition_cost, 63), sign(subtract(ts_delta(customer_acquisition_cost, 63), ts_mean(customer_acquisition_cost, 252))))
ts_zscore(ts_delta(customer_acquisition_cost, 63), 126)
multiply(ts_rank(customer_acquisition_cost, 63), reverse(ts_delta(customer_acquisition_cost, 63)))
add(ts_delta(customer_acquisition_cost, 63), multiply(ts_mean(customer_acquisition_cost, 126), -1))
power(ts_delta(customer_acquisition_cost, 63), 0.5)
multiply(ts_delta(customer_acquisition_cost, 63), log(ts_mean(customer_acquisition_cost, 126)))
divide(ts_delta(customer_acquisition_cost, 63), ts_sum(customer_acquisition_cost, 126))
subtract(ts_delta(customer_acquisition_cost, 63), ts_min(customer_acquisition_cost, 252))
multiply(ts_delta(customer_acquisition_cost, 63), if_else(ts_delta(customer_acquisition_cost, 63) > 0, -1, 1))
ts_scale(ts_delta(customer_acquisition_cost, 63), 126)
multiply(ts_delta(customer_acquisition_cost, 63), reverse(ts_zscore(customer_acquisition_cost, 126)))
add(ts_delta(customer_acquisition_cost, 63), multiply(ts_std_dev(customer_acquisition_cost, 126), -1))
divide(ts_delta(customer_acquisition_cost, 63), ts_max(customer_acquisition_cost, 252))
multiply(ts_delta(customer_acquisition_cost, 63), sqrt(ts_mean(customer_acquisition_cost, 126)))
reverse(ts_sum(ts_delta(customer_acquisition_cost, 21), 3))

@ -0,0 +1,39 @@
ts_delta(customer_acquisition_cost, 63)
ts_delta(customer_acquisition_cost, 63) > ts_mean(ts_delta(customer_acquisition_cost, 63), 189) * 1.2
-1 * if_else(ts_delta(customer_acquisition_cost, 63) > ts_mean(ts_delta(customer_acquisition_cost, 63), 189) * 1.2, 1, 0)
bucket(rank(customer_acquisition_cost), buckets="2,5,6,7,10")
group_zscore(ts_delta(customer_acquisition_cost, 63), market_penetration_group)
group_rank(ts_delta(customer_acquisition_cost, 63), market_penetration_group)
group_scale(ts_delta(customer_acquisition_cost, 63), market_penetration_group)
ts_zscore(ts_delta(customer_acquisition_cost, 63), 189)
ts_rank(ts_delta(customer_acquisition_cost, 63), 189)
ts_scale(ts_delta(customer_acquisition_cost, 63), 189)
group_neutralize(ts_delta(customer_acquisition_cost, 63), market_penetration_group)
multiply(ts_delta(customer_acquisition_cost, 63), -1, filter=true)
ts_av_diff(customer_acquisition_cost, 189)
divide(ts_delta(customer_acquisition_cost, 63), ts_mean(customer_acquisition_cost, 189))
ts_std_dev(ts_delta(customer_acquisition_cost, 63), 189)
ts_corr(ts_delta(customer_acquisition_cost, 63), ts_delta(forward_price_120, 63), 189)
ts_regression(ts_delta(customer_acquisition_cost, 63), ts_delta(forward_price_120, 63), 189, rettype=0)
ts_decay_linear(ts_delta(customer_acquisition_cost, 63), 189, dense=false)
group_backfill(ts_delta(customer_acquisition_cost, 63), market_penetration_group, 189)
ts_quantile(ts_delta(customer_acquisition_cost, 63), 189, driver="gaussian")

@ -0,0 +1,20 @@
ts_backfill(fnd6_newa2v1300_oiadp, 60)
multiply(ts_delta(fnd6_newqeventv110_cipenq, 5), ts_rank(ts_zscore(fnd6_newqv1300_cipenq, 30), 10))
group_neutralize(ts_mean(fscore_total, 20), vec_avg(multi_factor_acceleration_score_derivative))
subtract(ts_av_diff(nws12_afterhsz_tonhigh, 10), ts_av_diff(nws12_allz_result2, 10))
divide(ts_sum(nws12_mainz_tonhigh, 15), ts_std_dev(rp_nip_ratings, 15))
add(power(fn_comp_not_rec_a, 0.5), sqrt(abs(fn_comp_not_rec_stock_options_a)))
max(ts_delay(fn_comp_not_rec_stock_options_q, 3), ts_delay(fn_def_tax_assets_liab_net_q, 3))
if_else(ts_rank(fn_entity_common_stock_shares_out_a, 20) > 0.5, fn_entity_common_stock_shares_out_q, 0)
ts_corr(fn_liab_fair_val_a, fn_liab_fair_val_l1_a, 30)
min(ts_product(fn_liab_fair_val_l1_q, 5), ts_product(fn_liab_fair_val_l2_a, 5))
reverse(ts_regression(fn_liab_fair_val_l2_q, fn_oth_income_loss_fx_transaction_and_tax_translation_adj_q, 20, 0, 1))
signed_power(ts_delta(fn_treasury_stock_shares_a, 10), ts_scale(fnd2_a_fedstyitxrt, 10))
group_zscore(ts_backfill(forward_price_120, 30), bucket(rank(ts_mean(fscore_total, 20)), range="0,1,0.2"))
ts_decay_linear(multi_factor_acceleration_score_derivative, 10, true)
quantile(ts_covariance(nws12_afterhsz_tonhigh, nws12_allz_result2, 15), "gaussian", 1.0)
trade_when(ts_step(1) > 5, ts_arg_max(nws12_mainz_tonhigh, 10), rp_nip_ratings)
vec_sum(kth_element(fn_comp_not_rec_a, 5, 2))
hump(ts_count_nans(fn_comp_not_rec_stock_options_a, 20), 0.01)
winsorize(days_from_last_change(fn_comp_not_rec_stock_options_q), 3)
last_diff_value(fn_def_tax_assets_liab_net_q, 7)

@ -0,0 +1,39 @@
ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN")
divide(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), group_mean(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), sector))
ts_delta(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 20)
group_zscore(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), industry)
ts_rank(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 126)
ts_zscore(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 63)
group_scale(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), industry)
ts_decay_linear(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 90, dense=false)
ts_mean(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 60)
ts_std_dev(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 120)
ts_corr(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), forward_price_120, 90)
ts_quantile(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 252, driver="gaussian")
ts_arg_max(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 180)
ts_arg_min(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 180)
ts_scale(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 252, constant=0)
group_neutralize(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), subindustry)
ts_av_diff(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 90)
hump(ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), hump=0.01)
ts_regression(forward_price_120, ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN"), 120, lag=0, rettype=0)
multi_factor_acceleration_score_derivative * ts_backfill(digital_supply_chain_index, lookback=252, k=1, ignore="NAN")

@ -0,0 +1,39 @@
ts_backfill(fnd6_newa2v1300_oiadp, 250, 1)
ts_backfill(fn_entity_common_stock_shares_out_q, 250, 1)
ts_backfill(fn_treasury_stock_shares_a, 250, 1)
divide(ts_backfill(fnd6_newa2v1300_oiadp, 250, 1), group_mean(ts_backfill(fnd6_newa2v1300_oiadp, 250, 1), 1, bucket(fn_comp_not_rec_a, buckets = "2,5,6,7,10")))
ts_delta(ts_backfill(fn_liab_fair_val_l1_q, 250, 1), 60)
ts_rank(divide(fn_comp_not_rec_stock_options_a, fn_entity_common_stock_shares_out_q), 120, 0)
group_zscore(ts_backfill(fn_def_tax_assets_liab_net_q, 250, 1), bucket(ts_backfill(fn_treasury_stock_shares_a, 250, 1), buckets = "2,5,6,7,10"))
ts_corr(ts_backfill(fn_liab_fair_val_l2_a, 250, 1), ts_backfill(fn_liab_fair_val_l1_a, 250, 1), 60)
multiply(sign(ts_delta(ts_backfill(fnd6_newqv1300_cipenq, 250, 1), 30)), ts_std_dev(ts_backfill(fn_comp_not_rec_stock_options_q, 250, 1), 60))
if_else(ts_backfill(fscore_total, 250, 1) > group_mean(ts_backfill(fscore_total, 250, 1), 1, bucket(fn_comp_not_rec_a, buckets = "2,5,6,7,10")), ts_sum(ts_backfill(multi_factor_acceleration_score_derivative, 250, 1), 30), reverse(ts_sum(ts_backfill(multi_factor_acceleration_score_derivative, 250, 1), 30)))
subtract(ts_mean(ts_backfill(nws12_afterhsz_tonhigh, 250, 1), 60), ts_mean(ts_backfill(nws12_mainz_tonhigh, 250, 1), 60))
ts_av_diff(ts_backfill(rp_nip_ratings, 250, 1), 30)
add(ts_backfill(fn_oth_income_loss_fx_transaction_and_tax_translation_adj_q, 250, 1), ts_backfill(fnd2_a_fedstyitxrt, 250, 1))
power(divide(ts_backfill(fn_entity_common_stock_shares_out_a, 250, 1), ts_backfill(fn_treasury_stock_shares_a, 250, 1)), 0.5)
ts_zscore(ts_backfill(fn_liab_fair_val_a, 250, 1), 120)
group_neutralize(ts_backfill(forward_price_120, 250, 1), bucket(ts_backfill(fn_comp_not_rec_stock_options_a, 250, 1), buckets = "2,5,6,7,10"))
ts_regression(ts_backfill(fnd6_newa2v1300_oiadp, 250, 1), ts_backfill(fn_entity_common_stock_shares_out_q, 250, 1), 60, 0, 1)
log(divide(ts_backfill(fn_def_tax_assets_liab_net_q, 250, 1), ts_backfill(fn_comp_not_rec_a, 250, 1)))
ts_scale(ts_backfill(nws12_allz_result2, 250, 1), 60, 0.01)
signed_power(ts_delta(ts_backfill(fscore_total, 250, 1), 30), 2)
inverse(ts_mean(ts_backfill(fn_liab_fair_val_l2_q, 250, 1), 60))

@ -0,0 +1,39 @@
ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1)
divide(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), ts_mean(fnd6_newa2v1300_oiadp, 60))
ts_delta(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 5)
ts_rank(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 60)
ts_zscore(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 30)
group_mean(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), sector, industry)
group_neutralize(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), industry)
group_scale(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), sector)
group_zscore(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), industry)
ts_decay_linear(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 10)
ts_corr(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), ts_delay(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 1), 20)
ts_quantile(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 60, driver="gaussian")
ts_scale(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 30)
ts_std_dev(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 20)
ts_sum(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 10)
ts_av_diff(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 20)
ts_arg_max(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 30)
ts_arg_min(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 30)
ts_regression(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), ts_delay(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), 1), 20, rettype=0)
group_backfill(ts_backfill(fnd6_newa2v1300_oiadp, lookback=20, k=1), industry, 20, std=4)

@ -22,7 +22,7 @@ SILICONFLOW_BASE_URL = "https://api.siliconflow.cn/v1"
MODELS = [ MODELS = [
'Pro/deepseek-ai/DeepSeek-V3.1-Terminus', 'Pro/deepseek-ai/DeepSeek-V3.1-Terminus',
# 'deepseek-ai/DeepSeek-V3.2-Exp', # 'deepseek-ai/DeepSeek-V3.2-Exp',
# 'Qwen/Qwen3-VL-235B-A22B-Instruct', 'Qwen/Qwen3-VL-235B-A22B-Instruct',
# 'MiniMaxAI/MiniMax-M2', # 'MiniMaxAI/MiniMax-M2',
# 'zai-org/GLM-4.6', # 'zai-org/GLM-4.6',
# 'inclusionAI/Ring-flash-2.0', # 'inclusionAI/Ring-flash-2.0',
@ -31,6 +31,7 @@ MODELS = [
# 'inclusionAI/Ring-flash-2.0', # 'inclusionAI/Ring-flash-2.0',
] ]
def process_text(text): def process_text(text):
filter_list = ['\n', '\t', '\r', '\b', '\f', '\v', '', '', '', '10', '', '', '', '', '', '', ' ', '', '', '', '', filter_list = ['\n', '\t', '\r', '\b', '\f', '\v', '', '', '', '10', '', '', '', '', '', '', ' ', '', '', '', '',
'/', '', '', '', '_', '-', ')', '(', '', '', '', '', '', '', '', '...', '', '%', '&', '+', ',', '.', '/', '', '', '', '_', '-', ')', '(', '', '', '', '', '', '', '', '...', '', '%', '&', '+', ',', '.',
@ -53,6 +54,7 @@ def process_text(text):
else: else:
return None return None
def load_keys_text(): def load_keys_text():
if not os.path.exists(KEYS_TEXT): if not os.path.exists(KEYS_TEXT):
print(f"文件不存在: {KEYS_TEXT}") print(f"文件不存在: {KEYS_TEXT}")
@ -69,6 +71,7 @@ def load_keys_text():
return result_str return result_str
def txtFileLoader(file_path): def txtFileLoader(file_path):
if not os.path.exists(file_path): if not os.path.exists(file_path):
print(f"文件不存在: {file_path}") print(f"文件不存在: {file_path}")
@ -131,7 +134,20 @@ def create_result_folder():
folder_name = "generated_alpha" folder_name = "generated_alpha"
if not os.path.exists(folder_name): if not os.path.exists(folder_name):
os.makedirs(folder_name) os.makedirs(folder_name)
return folder_name
now = datetime.now()
year_folder = os.path.join(folder_name, str(now.year))
month_folder = os.path.join(year_folder, f"{now.month:02d}")
day_folder = os.path.join(month_folder, f"{now.day:02d}")
if not os.path.exists(year_folder):
os.makedirs(year_folder)
if not os.path.exists(month_folder):
os.makedirs(month_folder)
if not os.path.exists(day_folder):
os.makedirs(day_folder)
return day_folder
def call_siliconflow(prompt, model): def call_siliconflow(prompt, model):
@ -161,16 +177,10 @@ def call_siliconflow(prompt, model):
def save_result(result, folder): def save_result(result, folder):
now = datetime.now() now = datetime.now()
date_folder = now.strftime("%Y-%m-%d")
time_filename = now.strftime("%H%M%S") time_filename = now.strftime("%H%M%S")
full_folder_path = os.path.join(folder, date_folder)
if not os.path.exists(full_folder_path):
os.makedirs(full_folder_path)
print(f"创建文件夹: {full_folder_path}")
filename = f"{time_filename}.txt" filename = f"{time_filename}.txt"
filepath = os.path.join(full_folder_path, filename) filepath = os.path.join(folder, filename)
with open(filepath, 'w', encoding='utf-8') as f: with open(filepath, 'w', encoding='utf-8') as f:
f.write(result) f.write(result)
@ -193,12 +203,22 @@ def manual_prompt(prompt):
if not os.path.exists(manual_prompt_path): if not os.path.exists(manual_prompt_path):
os.makedirs(manual_prompt_path) os.makedirs(manual_prompt_path)
print(f"创建文件夹: {manual_prompt_path}")
# 文件名后添加保存时间
now = datetime.now() now = datetime.now()
year_folder = os.path.join(manual_prompt_path, str(now.year))
month_folder = os.path.join(year_folder, f"{now.month:02d}")
day_folder = os.path.join(month_folder, f"{now.day:02d}")
if not os.path.exists(year_folder):
os.makedirs(year_folder)
if not os.path.exists(month_folder):
os.makedirs(month_folder)
if not os.path.exists(day_folder):
os.makedirs(day_folder)
# 文件名后添加保存时间
filename = f"manual_prompt_{now.strftime('%Y%m%d%H%M%S')}.txt" filename = f"manual_prompt_{now.strftime('%Y%m%d%H%M%S')}.txt"
filepath = os.path.join(manual_prompt_path, filename) filepath = os.path.join(day_folder, filename)
with open(filepath, 'w', encoding='utf-8') as f: with open(filepath, 'w', encoding='utf-8') as f:
f.write(prompt) f.write(prompt)
@ -264,7 +284,6 @@ def main():
print(f'搜索数据集为空, 程序退出') print(f'搜索数据集为空, 程序退出')
exit(1) exit(1)
data_sets = 0 data_sets = 0
print(f'从数据集中提取了 {len(result_data_sets)} 条数据') print(f'从数据集中提取了 {len(result_data_sets)} 条数据')
if len(result_data_sets) > 500: if len(result_data_sets) > 500:
@ -272,7 +291,6 @@ def main():
else: else:
data_sets = result_data_sets data_sets = result_data_sets
# 组合提示词 # 组合提示词
prompt = prepare_prompt(data_sets) prompt = prepare_prompt(data_sets)

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save