first commit

main
Jack 4 weeks ago
commit f1440fe3ae
  1. 67
      .gitignore
  2. 25
      Readme.md
  3. 13
      __init__.py
  4. 1
      account.txt
  5. 4
      alpha.txt
  6. 8
      config/__init__.py
  7. 19
      config/settings.py
  8. 9
      core/__init__.py
  9. 214
      core/api_client.py
  10. 65
      core/models.py
  11. 22
      main.py
  12. 496
      main_bak.py
  13. 8
      managers/__init__.py
  14. 211
      managers/simulation_manager.py
  15. 168
      reference/yearly-stats.json
  16. 137
      reference/指标.json
  17. 22
      reference/进度.json
  18. 9
      utils/__init__.py
  19. 59
      utils/file_utils.py
  20. 9
      utils/time_utils.py

67
.gitignore vendored

@ -0,0 +1,67 @@
.DS_Store
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
*.egg-info/
.installed.cfg
*.egg
.idea/*
xml_files/
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*,cover
# Translations
*.mo
*.pot
# Django stuff:
*.log
# Sphinx documentation
docs/_build/
# PyBuilder
target/
other/split_clash_config/split_config
ai_news/save_data
daily/*.txt
./result

@ -0,0 +1,25 @@
### 依赖
pip install httpx
### 目录结构
```text
FactorSimulator/
├── __init__.py # 包初始化文件,定义包级别的导入和元数据
├── main.py # 程序主入口,负责启动批量模拟流程
├── core/ # 核心业务逻辑模块
│ ├── __init__.py # 核心模块初始化,定义模块级别的导入
│ ├── api_client.py # WorldQuant Brain API客户端封装,处理HTTP请求和认证
│ └── models.py # 数据模型定义,使用dataclass定义各种指标和结果的数据结构
├── managers/ # 管理器模块,负责业务流程协调
│ ├── __init__.py # 管理器模块初始化
│ └── simulation_manager.py # 模拟管理器,负责批量模拟的调度、线程池管理和结果汇总
├── utils/ # 工具函数模块
│ ├── __init__.py # 工具模块初始化
│ ├── file_utils.py # 文件操作工具,处理因子列表加载和结果保存
│ └── time_utils.py # 时间格式化工具,将秒数转换为可读格式
└── config/ # 配置模块
├── __init__.py # 配置模块初始化
└── settings.py # 模拟参数配置,定义默认的模拟设置常量
```

@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
"""
WorldQuant Brain 因子模拟器
用于批量模拟Alpha因子的工具
"""
__version__ = "0.0.1"
__author__ = "Jack"
from .core.api_client import WorldQuantBrainSimulate
from .managers.simulation_manager import AlphaSimulationManager
__all__ = ['WorldQuantBrainSimulate', 'AlphaSimulationManager']

@ -0,0 +1 @@
['jack0210_@hotmail.com', '!QAZ2wsx+0913']

@ -0,0 +1,4 @@
ts_rank(ts_delta(close, 5), 20)
ts_corr(ts_delay(close, 10), ts_delay(volume, 10), 20)
-ts_rank(ts_std(close, 60), 20)
-(close - ts_mean(close, 30)) / ts_std(close, 30)

@ -0,0 +1,8 @@
# -*- coding: utf-8 -*-
"""
配置模块 - 包含配置常量
"""
from .settings import DEFAULT_SIMULATION_SETTINGS
__all__ = ['DEFAULT_SIMULATION_SETTINGS']

@ -0,0 +1,19 @@
# -*- coding: utf-8 -*-
"""
模拟配置常量
"""
DEFAULT_SIMULATION_SETTINGS = {
'instrumentType': 'EQUITY',
'region': 'USA',
'universe': 'TOP3000',
'delay': 1,
'decay': 0,
'neutralization': 'INDUSTRY',
'truncation': 0.08,
'pasteurization': 'ON',
'unitHandling': 'VERIFY',
'nanHandling': 'OFF',
'language': 'FASTEXPR',
'visualization': False,
}

@ -0,0 +1,9 @@
# -*- coding: utf-8 -*-
"""
核心模块 - 包含API客户端和数据模型
"""
from .api_client import WorldQuantBrainSimulate
from .models import AlphaMetrics, SimulationResult
__all__ = ['WorldQuantBrainSimulate', 'AlphaMetrics', 'SimulationResult']

@ -0,0 +1,214 @@
# -*- coding: utf-8 -*-
import os.path
import httpx
import time
from httpx import BasicAuth
from typing import Dict, Any, Optional, Tuple
from .models import AlphaMetrics, TrainMetrics, TestMetrics, AlphaInfo
class WorldQuantBrainSimulate:
def __init__(self, credentials_file='account.txt'):
self.credentials_file = credentials_file
self.client = None
self.brain_api_url = 'https://api.worldquantbrain.com'
"""读取本地账号密码"""
def load_credentials(self) -> Tuple[str, str]:
if not os.path.exists(self.credentials_file):
print("未找到 account.txt 文件")
with open(self.credentials_file, 'w') as f:
f.write("")
print("account.txt 文件已创建,请填写账号密码, 格式: ['username', 'password]")
exit(1)
with open(self.credentials_file) as f:
credentials = eval(f.read())
return credentials[0], credentials[1]
"""登录认证"""
def login(self) -> bool:
username, password = self.load_credentials()
self.client = httpx.Client(auth=BasicAuth(username, password))
response = self.client.post(f'{self.brain_api_url}/authentication')
print(f"登录状态: {response.status_code}")
if response.status_code == 201:
print("登录成功!")
return True
else:
print(f"登录失败: {response.json()}")
return False
"""模拟Alpha因子"""
def simulate_alpha(self, expression: str, settings: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
if self.client is None:
raise Exception("请先登录")
default_settings = {
'instrumentType': 'EQUITY',
'region': 'USA',
'universe': 'TOP3000',
'delay': 1,
'decay': 0,
'neutralization': 'INDUSTRY',
'truncation': 0.08,
'pasteurization': 'ON',
'unitHandling': 'VERIFY',
'nanHandling': 'OFF',
'language': 'FASTEXPR',
'visualization': False,
}
if settings:
default_settings.update(settings)
simulation_data = {
'type': 'REGULAR',
'settings': default_settings,
'regular': expression
}
sim_resp = self.client.post(f'{self.brain_api_url}/simulations', json=simulation_data)
print(f"模拟提交状态: {sim_resp.status_code}")
sim_progress_url = sim_resp.headers['location']
print(f"进度URL: {sim_progress_url}")
while True:
sim_progress_resp = self.client.get(sim_progress_url)
retry_after_sec = float(sim_progress_resp.headers.get("Retry-After", 0))
if retry_after_sec == 0:
break
print(sim_progress_resp.json())
print(f"等待 {retry_after_sec} 秒...")
time.sleep(retry_after_sec)
# 如果因子模拟不通过, 获取一下失败信息
if sim_progress_resp.json()["status"] == "ERROR":
result = sim_progress_resp.json()["message"]
print(f"因子模拟失败: {result}")
# 返回一个特殊标识,表示模拟失败
return {"status": "error", "message": result}
alpha_id = sim_progress_resp.json()["alpha"]
print(f"生成的Alpha ID: {alpha_id}")
# 获取详细的性能指标
metrics = self.get_alpha_metrics(alpha_id)
return {"status": "success", "alpha_id": alpha_id, "metrics": metrics}
"""获取Alpha因子的详细指标"""
def get_alpha_metrics(self, alpha_id: str) -> AlphaMetrics:
if self.client is None:
raise Exception("请先登录")
try:
# 获取Alpha的基本信息和指标
alpha_url = f'{self.brain_api_url}/alphas/{alpha_id}'
alpha_resp = self.client.get(alpha_url)
if alpha_resp.status_code in [200, 201]:
alpha_data = alpha_resp.json()
return self._parse_alpha_metrics(alpha_data)
else:
return AlphaMetrics(
train_metrics=TrainMetrics(),
is_metrics=TestMetrics(),
test_metrics=TestMetrics(),
alpha_info=AlphaInfo()
)
except Exception as e:
print(f"获取指标时出错: {str(e)}")
return AlphaMetrics(
train_metrics=TrainMetrics(),
is_metrics=TestMetrics(),
test_metrics=TestMetrics(),
alpha_info=AlphaInfo()
)
"""解析Alpha数据,提取关键指标"""
def _parse_alpha_metrics(self, alpha_data: Dict[str, Any]) -> AlphaMetrics:
# 解析训练集数据
train_metrics = TrainMetrics()
if 'train' in alpha_data and alpha_data['train']:
train_data = alpha_data['train']
train_metrics = TrainMetrics(
sharpe_ratio=train_data.get('sharpe'),
annual_return=train_data.get('returns'),
max_drawdown=train_data.get('drawdown'),
turnover=train_data.get('turnover'),
fitness=train_data.get('fitness'),
pnl=train_data.get('pnl'),
book_size=train_data.get('bookSize'),
long_count=train_data.get('longCount'),
short_count=train_data.get('shortCount'),
margin=train_data.get('margin'),
)
# 解析样本内测试数据
is_metrics = TestMetrics()
if 'is' in alpha_data and alpha_data['is']:
is_data = alpha_data['is']
is_metrics = TestMetrics(
sharpe_ratio=is_data.get('sharpe'),
annual_return=is_data.get('returns'),
max_drawdown=is_data.get('drawdown'),
turnover=is_data.get('turnover'),
fitness=is_data.get('fitness'),
pnl=is_data.get('pnl'),
)
# 解析样本外测试数据
test_metrics = TestMetrics()
if 'test' in alpha_data and alpha_data['test']:
test_data = alpha_data['test']
test_metrics = TestMetrics(
sharpe_ratio=test_data.get('sharpe'),
annual_return=test_data.get('returns'),
max_drawdown=test_data.get('drawdown'),
turnover=test_data.get('turnover'),
fitness=test_data.get('fitness'),
pnl=test_data.get('pnl'),
)
# 解析Alpha基本信息
alpha_info = AlphaInfo(
grade=alpha_data.get('grade'),
stage=alpha_data.get('stage'),
status=alpha_data.get('status'),
date_created=alpha_data.get('dateCreated'),
)
# 解析检查结果
if 'is' in alpha_data and 'checks' in alpha_data['is']:
checks = alpha_data['is']['checks']
check_results = {}
for check in checks:
check_name = check.get('name', '')
result = check.get('result', '')
value = check.get('value', None)
check_results[check_name.lower()] = {
'result': result,
'value': value,
'limit': check.get('limit', None)
}
alpha_info.checks = check_results
return AlphaMetrics(
train_metrics=train_metrics,
is_metrics=is_metrics,
test_metrics=test_metrics,
alpha_info=alpha_info,
alpha_id=alpha_data.get('id')
)
def close(self):
"""关闭连接"""
if self.client:
self.client.close()

@ -0,0 +1,65 @@
# -*- coding: utf-8 -*-
from dataclasses import dataclass
from typing import Dict, Any, Optional
@dataclass
class TrainMetrics:
"""训练集指标"""
sharpe_ratio: Optional[float] = None
annual_return: Optional[float] = None
max_drawdown: Optional[float] = None
turnover: Optional[float] = None
fitness: Optional[float] = None
pnl: Optional[float] = None
book_size: Optional[float] = None
long_count: Optional[float] = None
short_count: Optional[float] = None
margin: Optional[float] = None
@dataclass
class TestMetrics:
"""测试集指标"""
sharpe_ratio: Optional[float] = None
annual_return: Optional[float] = None
max_drawdown: Optional[float] = None
turnover: Optional[float] = None
fitness: Optional[float] = None
pnl: Optional[float] = None
@dataclass
class AlphaInfo:
"""Alpha基本信息"""
grade: Optional[str] = None
stage: Optional[str] = None
status: Optional[str] = None
date_created: Optional[str] = None
checks: Optional[Dict[str, Any]] = None
@dataclass
class AlphaMetrics:
"""Alpha因子完整指标"""
train_metrics: TrainMetrics
is_metrics: TestMetrics
test_metrics: TestMetrics
alpha_info: AlphaInfo
alpha_id: Optional[str] = None
@dataclass
class SimulationResult:
"""模拟结果"""
expression: str
time_consuming: float
formatted_time: str
alpha_id: str
status: str # success, error, failed
description: str
simulation_timestamp: str
train_metrics: Optional[TrainMetrics] = None
is_metrics: Optional[TestMetrics] = None
test_metrics: Optional[TestMetrics] = None
alpha_info: Optional[AlphaInfo] = None

@ -0,0 +1,22 @@
# -*- coding: utf-8 -*-
import os
from managers.simulation_manager import AlphaSimulationManager
from utils.file_utils import load_alpha_list
def main():
"""主程序入口"""
# 待模拟因子列表
alpha_list = load_alpha_list('alpha.txt')
if not alpha_list:
print("未找到有效的因子表达式,请检查 alpha.txt 文件")
return
# 创建模拟管理器并运行
manager = AlphaSimulationManager()
results = manager.run_simulation(alpha_list, batch_size=3)
if __name__ == "__main__":
main()

@ -0,0 +1,496 @@
import os.path
import httpx
import json
from httpx import BasicAuth
import time
from random import uniform
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
class WorldQuantBrainSimulate:
def __init__(self, credentials_file='account.txt'):
self.credentials_file = credentials_file
self.client = None
self.brain_api_url = 'https://api.worldquantbrain.com'
"""读取本地账号密码"""
def load_credentials(self):
if not os.path.exists(self.credentials_file):
print("未找到 account.txt 文件")
with open(self.credentials_file, 'w') as f: f.write("")
print("account.txt 文件已创建,请填写账号密码, 格式: ['username', 'password]")
exit(1)
with open(self.credentials_file) as f:
credentials = eval(f.read())
return credentials[0], credentials[1]
"""登录认证"""
def login(self):
username, password = self.load_credentials()
self.client = httpx.Client(auth=BasicAuth(username, password))
response = self.client.post(f'{self.brain_api_url}/authentication')
print(f"登录状态: {response.status_code}")
if response.status_code == 201:
print("登录成功!")
return True
else:
print(f"登录失败: {response.json()}")
return False
"""模拟Alpha因子"""
def simulate_alpha(self, expression, settings=None):
if self.client is None:
raise Exception("请先登录")
default_settings = {
'instrumentType': 'EQUITY',
'region': 'USA',
'universe': 'TOP3000',
'delay': 1,
'decay': 0,
'neutralization': 'INDUSTRY',
'truncation': 0.08,
'pasteurization': 'ON',
'unitHandling': 'VERIFY',
'nanHandling': 'OFF',
'language': 'FASTEXPR',
'visualization': False,
}
if settings:
default_settings.update(settings)
simulation_data = {
'type': 'REGULAR',
'settings': default_settings,
'regular': expression
}
sim_resp = self.client.post(f'{self.brain_api_url}/simulations', json=simulation_data)
print(f"模拟提交状态: {sim_resp.status_code}")
sim_progress_url = sim_resp.headers['location']
print(f"进度URL: {sim_progress_url}")
while True:
sim_progress_resp = self.client.get(sim_progress_url)
retry_after_sec = float(sim_progress_resp.headers.get("Retry-After", 0))
if retry_after_sec == 0:
break
print(sim_progress_resp.json())
print(f"等待 {retry_after_sec} 秒...")
time.sleep(retry_after_sec)
# 如果因子模拟不通过, 获取一下失败信息
if sim_progress_resp.json()["status"] == "ERROR":
result = sim_progress_resp.json()["message"]
print(f"因子模拟失败: {result}")
# 返回一个特殊标识,表示模拟失败
return {"status": "error", "message": result}
alpha_id = sim_progress_resp.json()["alpha"]
print(f"生成的Alpha ID: {alpha_id}")
# 获取详细的性能指标
metrics = self.get_alpha_metrics(alpha_id)
return {"status": "success", "alpha_id": alpha_id, "metrics": metrics}
"""获取Alpha因子的详细指标"""
def get_alpha_metrics(self, alpha_id):
if self.client is None:
raise Exception("请先登录")
try:
# 获取Alpha的基本信息和指标
alpha_url = f'{self.brain_api_url}/alphas/{alpha_id}'
alpha_resp = self.client.get(alpha_url)
if alpha_resp.status_code in [200, 201]:
alpha_data = alpha_resp.json()
return self._parse_alpha_metrics(alpha_data)
else:
return {"error": f"无法获取Alpha信息: {alpha_resp.status_code}"}
except Exception as e:
return {"error": f"获取指标时出错: {str(e)}"}
"""解析Alpha数据,提取关键指标"""
def _parse_alpha_metrics(self, alpha_data):
metrics = {}
try:
# 从train字段获取指标数据
if 'train' in alpha_data and alpha_data['train']:
train_data = alpha_data['train']
metrics.update({
'sharpe_ratio': train_data.get('sharpe', None),
'annual_return': train_data.get('returns', None),
'max_drawdown': train_data.get('drawdown', None),
'turnover': train_data.get('turnover', None),
'fitness': train_data.get('fitness', None),
'pnl': train_data.get('pnl', None),
'book_size': train_data.get('bookSize', None),
'long_count': train_data.get('longCount', None),
'short_count': train_data.get('shortCount', None),
'margin': train_data.get('margin', None),
'start_date': train_data.get('startDate', None),
})
# 从is字段获取样本内测试数据
if 'is' in alpha_data and alpha_data['is']:
is_data = alpha_data['is']
metrics.update({
'is_sharpe': is_data.get('sharpe', None),
'is_returns': is_data.get('returns', None),
'is_drawdown': is_data.get('drawdown', None),
'is_turnover': is_data.get('turnover', None),
'is_fitness': is_data.get('fitness', None),
'is_pnl': is_data.get('pnl', None),
})
# 从test字段获取样本外测试数据
if 'test' in alpha_data and alpha_data['test']:
test_data = alpha_data['test']
metrics.update({
'test_sharpe': test_data.get('sharpe', None),
'test_returns': test_data.get('returns', None),
'test_drawdown': test_data.get('drawdown', None),
'test_turnover': test_data.get('turnover', None),
'test_fitness': test_data.get('fitness', None),
'test_pnl': test_data.get('pnl', None),
})
# 其他重要信息
metrics.update({
'alpha_id': alpha_data.get('id', None),
'grade': alpha_data.get('grade', None),
'stage': alpha_data.get('stage', None),
'status': alpha_data.get('status', None),
'date_created': alpha_data.get('dateCreated', None),
})
# 解析检查结果
if 'is' in alpha_data and 'checks' in alpha_data['is']:
checks = alpha_data['is']['checks']
check_results = {}
for check in checks:
check_name = check.get('name', '')
result = check.get('result', '')
value = check.get('value', None)
check_results[check_name.lower()] = {
'result': result,
'value': value,
'limit': check.get('limit', None)
}
metrics['checks'] = check_results
except Exception as e:
metrics['error'] = f"解析指标时出错: {str(e)}"
return metrics
def close(self):
"""关闭连接"""
if self.client:
self.client.close()
class AlphaSimulationManager:
def __init__(self, credentials_file='account.txt'):
self.credentials_file = credentials_file
self.results = []
"""将秒数格式化为 xx分xx秒 格式"""
def format_time(self, seconds):
if seconds < 60:
return f"{seconds:.2f}"
else:
minutes = int(seconds // 60)
remaining_seconds = seconds % 60
return f"{minutes}{remaining_seconds:.2f}"
"""模拟单个Alpha因子(线程安全)"""
def simulate_single_alpha(self, api, expression, settings=None):
alpha_start_time = time.time()
try:
# 模拟Alpha因子
simulation_result = api.simulate_alpha(expression, settings)
alpha_end_time = time.time()
time_consuming = alpha_end_time - alpha_start_time
# 根据模拟结果类型处理
if simulation_result["status"] == "success":
# 模拟成功的结果
result = {
"expression": expression,
"time_consuming": time_consuming,
"formatted_time": self.format_time(time_consuming),
"alpha_id": simulation_result["alpha_id"],
"status": "success",
"description": "/",
"simulation_timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
# 训练集指标
"train_metrics": {
"sharpe_ratio": simulation_result["metrics"].get('sharpe_ratio'),
"annual_return": simulation_result["metrics"].get('annual_return'),
"max_drawdown": simulation_result["metrics"].get('max_drawdown'),
"turnover": simulation_result["metrics"].get('turnover'),
"fitness": simulation_result["metrics"].get('fitness'),
"pnl": simulation_result["metrics"].get('pnl'),
"book_size": simulation_result["metrics"].get('book_size'),
"long_count": simulation_result["metrics"].get('long_count'),
"short_count": simulation_result["metrics"].get('short_count'),
"margin": simulation_result["metrics"].get('margin'),
},
# 样本内测试指标
"is_metrics": {
"sharpe_ratio": simulation_result["metrics"].get('is_sharpe'),
"annual_return": simulation_result["metrics"].get('is_returns'),
"max_drawdown": simulation_result["metrics"].get('is_drawdown'),
"turnover": simulation_result["metrics"].get('is_turnover'),
"fitness": simulation_result["metrics"].get('is_fitness'),
"pnl": simulation_result["metrics"].get('is_pnl'),
},
# 样本外测试指标
"test_metrics": {
"sharpe_ratio": simulation_result["metrics"].get('test_sharpe'),
"annual_return": simulation_result["metrics"].get('test_returns'),
"max_drawdown": simulation_result["metrics"].get('test_drawdown'),
"turnover": simulation_result["metrics"].get('test_turnover'),
"fitness": simulation_result["metrics"].get('test_fitness'),
"pnl": simulation_result["metrics"].get('test_pnl'),
},
# 其他信息
"alpha_info": {
"grade": simulation_result["metrics"].get('grade'),
"stage": simulation_result["metrics"].get('stage'),
"status": simulation_result["metrics"].get('status'),
"date_created": simulation_result["metrics"].get('date_created'),
"checks": simulation_result["metrics"].get('checks', {})
}
}
print(f"✓ 因子模拟成功: {expression}")
print(f" 耗时: {self.format_time(time_consuming)},Alpha ID: {simulation_result['alpha_id']}")
# 打印关键指标
self._print_success_metrics(simulation_result["metrics"])
else:
# 模拟失败的结果(API返回的错误)
result = {
"expression": expression,
"time_consuming": time_consuming,
"formatted_time": self.format_time(time_consuming),
"alpha_id": "/",
"status": "error",
"description": simulation_result["message"],
"simulation_timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"performance_metrics": {},
"risk_metrics": {},
"quantile_metrics": {},
"other_metrics": {}
}
print(f"✗ 因子模拟失败: {expression}")
print(f" 耗时: {self.format_time(time_consuming)},错误: {simulation_result['message']}")
except Exception as e:
# 其他异常情况
alpha_end_time = time.time()
time_consuming = alpha_end_time - alpha_start_time
result = {
"expression": expression,
"time_consuming": time_consuming,
"formatted_time": self.format_time(time_consuming),
"alpha_id": "/",
"status": "failed",
"description": str(e),
"simulation_timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"performance_metrics": {},
"risk_metrics": {},
"quantile_metrics": {},
"other_metrics": {}
}
print(f"✗ 因子模拟异常: {expression}")
print(f" 耗时: {self.format_time(time_consuming)},异常: {str(e)}")
return result
"""打印成功因子的关键指标"""
def _print_success_metrics(self, metrics):
if 'error' in metrics:
print(f" 指标获取错误: {metrics['error']}")
return
print(" 关键指标 (训练集):")
key_metrics = [
('夏普比率', 'sharpe_ratio'),
('年化收益', 'annual_return'),
('最大回撤', 'max_drawdown'),
('换手率', 'turnover'),
('适应度', 'fitness'),
('PNL', 'pnl'),
]
for chinese_name, metric_key in key_metrics:
value = metrics.get(metric_key)
if value is not None:
if isinstance(value, float):
value = f"{value:.4f}"
print(f" {chinese_name}: {value}")
# 显示样本外测试的夏普比率(如果存在)
test_sharpe = metrics.get('test_sharpe')
if test_sharpe is not None:
print(f" 样本外夏普比率: {test_sharpe:.4f}")
"""模拟一批Alpha因子(3个一组)"""
def simulate_alpha_batch(self, alpha_batch, batch_number):
print(f"\n{'=' * 60}")
print(f"开始第 {batch_number} 批因子模拟 (共 {len(alpha_batch)} 个因子)")
print(f"因子列表: {alpha_batch}")
print(f"{'=' * 60}")
batch_start_time = time.time()
batch_results = []
# 创建API客户端实例(每个线程独立的客户端)
api = WorldQuantBrainSimulate(self.credentials_file)
try:
if api.login():
# 使用线程池执行3个因子的模拟
with ThreadPoolExecutor(max_workers=3) as executor:
# 提交所有任务
future_to_alpha = {executor.submit(self.simulate_single_alpha, api, alpha): alpha for alpha in alpha_batch}
# 等待所有任务完成
for future in as_completed(future_to_alpha):
alpha = future_to_alpha[future]
try:
result = future.result()
batch_results.append(result)
except Exception as e:
print(f"因子 {alpha} 执行异常: {e}")
except Exception as e:
print(f"{batch_number} 批模拟过程中出错: {e}")
finally:
api.close()
batch_end_time = time.time()
batch_total_time = batch_end_time - batch_start_time
print(f"\n{batch_number} 批模拟完成!")
print(f"本批总耗时: {self.format_time(batch_total_time)}")
print(f"{'=' * 60}")
return batch_results
"""运行批量模拟"""
def run_simulation(self, alpha_list, batch_size=3):
print("开始Alpha因子批量模拟...")
total_start_time = time.time()
# 将因子列表分成每批3个
batches = [alpha_list[i:i + batch_size] for i in range(0, len(alpha_list), batch_size)]
all_results = []
for i, batch in enumerate(batches, 1):
# 模拟当前批次
batch_results = self.simulate_alpha_batch(batch, i)
all_results.extend(batch_results)
# 如果不是最后一批,则等待3-5秒
if i < len(batches):
sleep_time = uniform(3, 5)
print(f"\n等待 {sleep_time:.2f} 秒后开始下一批...")
time.sleep(sleep_time)
total_end_time = time.time()
total_time = total_end_time - total_start_time
# 输出最终结果汇总
self.print_summary(all_results, total_time)
# 保存结果到文件
self.save_results(all_results)
return all_results
"""打印结果汇总"""
def print_summary(self, results, total_time):
print(f"\n{'=' * 60}")
print("模拟结果汇总")
print(f"{'=' * 60}")
success_count = sum(1 for r in results if r['status'] == 'success')
error_count = sum(1 for r in results if r['status'] == 'error')
failed_count = sum(1 for r in results if r['status'] == 'failed')
print(f"总模拟因子数: {len(results)}")
print(f"成功: {success_count}")
print(f"模拟错误: {error_count}")
print(f"执行异常: {failed_count}")
print(f"总耗时: {self.format_time(total_time)}")
print(f"{'=' * 60}")
for i, result in enumerate(results, 1):
status_icon = "" if result['status'] == 'success' else ""
print(f"{i}. {status_icon} {result['expression']}")
print(f" 状态: {result['status']}")
print(f" 耗时: {result['formatted_time']}")
print(f" Alpha ID: {result['alpha_id']}")
if result['status'] != 'success':
print(f" 原因: {result['description']}")
print()
"""保存结果到文件"""
def save_results(self, results):
# 转换为可序列化的格式
serializable_results = []
for result in results:
serializable_result = result.copy()
serializable_result['time_consuming'] = round(serializable_result['time_consuming'], 2)
# 处理metrics中的浮点数,保留6位小数
for metric_category in ['performance_metrics', 'risk_metrics', 'quantile_metrics', 'other_metrics']:
if metric_category in serializable_result:
for key, value in serializable_result[metric_category].items():
if isinstance(value, float):
serializable_result[metric_category][key] = round(value, 6)
serializable_results.append(serializable_result)
# 将日志文件, 保存到当前目录下, result 文件夹中
if not os.path.exists('./result'):
os.makedirs('./result')
result_name = f"result/simulation_results-{str(int(time.time()))}.json"
with open(result_name, 'w', encoding='utf-8') as f:
json.dump(serializable_results, f, ensure_ascii=False, indent=2)
print(f"结果已保存到 {result_name}")
if __name__ == "__main__":
# 待模拟因子列表
with open('alpha.txt', 'r', encoding='utf-8') as file:
alpha_list = [line.strip() for line in file]
if not alpha_list:
print("alpha.txt 文件不存在")
with open('alpha.txt', 'w', encoding='utf-8') as file: file.write("")
print("已创建 alpha.txt 文件, 请添加因子后重新运行, 一行一个因子")
exit(1)
# 创建模拟管理器并运行
manager = AlphaSimulationManager()
results = manager.run_simulation(alpha_list, batch_size=3)

@ -0,0 +1,8 @@
# -*- coding: utf-8 -*-
"""
管理模块 - 包含各种管理器类
"""
from .simulation_manager import AlphaSimulationManager
__all__ = ['AlphaSimulationManager']

@ -0,0 +1,211 @@
# -*- coding: utf-8 -*-
import time
import json
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
from random import uniform
from typing import List, Dict, Any
from core.api_client import WorldQuantBrainSimulate
from core.models import SimulationResult, TrainMetrics, TestMetrics, AlphaInfo
from utils.time_utils import format_time
from utils.file_utils import save_results_to_file
class AlphaSimulationManager:
def __init__(self, credentials_file='account.txt'):
self.credentials_file = credentials_file
self.results = []
"""模拟单个Alpha因子(线程安全)"""
def simulate_single_alpha(self, api: WorldQuantBrainSimulate, expression: str,
settings: Dict[str, Any] = None) -> SimulationResult:
alpha_start_time = time.time()
try:
# 模拟Alpha因子
simulation_result = api.simulate_alpha(expression, settings)
alpha_end_time = time.time()
time_consuming = alpha_end_time - alpha_start_time
# 根据模拟结果类型处理
if simulation_result["status"] == "success":
# 模拟成功的结果
metrics = simulation_result["metrics"]
result = SimulationResult(
expression=expression,
time_consuming=time_consuming,
formatted_time=format_time(time_consuming),
alpha_id=simulation_result["alpha_id"],
status="success",
description="/",
simulation_timestamp=time.strftime("%Y-%m-%d %H:%M:%S"),
train_metrics=metrics.train_metrics,
is_metrics=metrics.is_metrics,
test_metrics=metrics.test_metrics,
alpha_info=metrics.alpha_info
)
print(f"✓ 因子模拟成功: {expression}")
print(f" 耗时: {format_time(time_consuming)},Alpha ID: {simulation_result['alpha_id']}")
# 打印关键指标
self._print_success_metrics(metrics)
else:
# 模拟失败的结果(API返回的错误)
result = SimulationResult(
expression=expression,
time_consuming=time_consuming,
formatted_time=format_time(time_consuming),
alpha_id="/",
status="error",
description=simulation_result["message"],
simulation_timestamp=time.strftime("%Y-%m-%d %H:%M:%S")
)
print(f"✗ 因子模拟失败: {expression}")
print(f" 耗时: {format_time(time_consuming)},错误: {simulation_result['message']}")
except Exception as e:
# 其他异常情况
alpha_end_time = time.time()
time_consuming = alpha_end_time - alpha_start_time
result = SimulationResult(
expression=expression,
time_consuming=time_consuming,
formatted_time=format_time(time_consuming),
alpha_id="/",
status="failed",
description=str(e),
simulation_timestamp=time.strftime("%Y-%m-%d %H:%M:%S")
)
print(f"✗ 因子模拟异常: {expression}")
print(f" 耗时: {format_time(time_consuming)},异常: {str(e)}")
return result
"""打印成功因子的关键指标"""
def _print_success_metrics(self, metrics):
print(" 关键指标 (训练集):")
key_metrics = [
('夏普比率', metrics.train_metrics.sharpe_ratio),
('年化收益', metrics.train_metrics.annual_return),
('最大回撤', metrics.train_metrics.max_drawdown),
('换手率', metrics.train_metrics.turnover),
('适应度', metrics.train_metrics.fitness),
('PNL', metrics.train_metrics.pnl),
]
for chinese_name, value in key_metrics:
if value is not None:
if isinstance(value, float):
value = f"{value:.4f}"
print(f" {chinese_name}: {value}")
# 显示样本外测试的夏普比率(如果存在)
if metrics.test_metrics.sharpe_ratio is not None:
print(f" 样本外夏普比率: {metrics.test_metrics.sharpe_ratio:.4f}")
"""模拟一批Alpha因子(3个一组)"""
def simulate_alpha_batch(self, alpha_batch: List[str], batch_number: int) -> List[SimulationResult]:
print(f"\n{'=' * 60}")
print(f"开始第 {batch_number} 批因子模拟 (共 {len(alpha_batch)} 个因子)")
print(f"因子列表: {alpha_batch}")
print(f"{'=' * 60}")
batch_start_time = time.time()
batch_results = []
# 创建API客户端实例(每个线程独立的客户端)
api = WorldQuantBrainSimulate(self.credentials_file)
try:
if api.login():
# 使用线程池执行3个因子的模拟
with ThreadPoolExecutor(max_workers=3) as executor:
# 提交所有任务
future_to_alpha = {
executor.submit(self.simulate_single_alpha, api, alpha): alpha
for alpha in alpha_batch
}
# 等待所有任务完成
for future in as_completed(future_to_alpha):
alpha = future_to_alpha[future]
try:
result = future.result()
batch_results.append(result)
except Exception as e:
print(f"因子 {alpha} 执行异常: {e}")
except Exception as e:
print(f"{batch_number} 批模拟过程中出错: {e}")
finally:
api.close()
batch_end_time = time.time()
batch_total_time = batch_end_time - batch_start_time
print(f"\n{batch_number} 批模拟完成!")
print(f"本批总耗时: {format_time(batch_total_time)}")
print(f"{'=' * 60}")
return batch_results
"""运行批量模拟"""
def run_simulation(self, alpha_list: List[str], batch_size: int = 3) -> List[SimulationResult]:
print("开始Alpha因子批量模拟...")
total_start_time = time.time()
# 将因子列表分成每批3个
batches = [alpha_list[i:i + batch_size] for i in range(0, len(alpha_list), batch_size)]
all_results = []
for i, batch in enumerate(batches, 1):
# 模拟当前批次
batch_results = self.simulate_alpha_batch(batch, i)
all_results.extend(batch_results)
# 如果不是最后一批,则等待3-5秒
if i < len(batches):
sleep_time = uniform(3, 5)
print(f"\n等待 {sleep_time:.2f} 秒后开始下一批...")
time.sleep(sleep_time)
total_end_time = time.time()
total_time = total_end_time - total_start_time
# 输出最终结果汇总
self.print_summary(all_results, total_time)
# 保存结果到文件
save_results_to_file(all_results)
return all_results
"""打印结果汇总"""
def print_summary(self, results: List[SimulationResult], total_time: float):
print(f"\n{'=' * 60}")
print("模拟结果汇总")
print(f"{'=' * 60}")
success_count = sum(1 for r in results if r.status == 'success')
error_count = sum(1 for r in results if r.status == 'error')
failed_count = sum(1 for r in results if r.status == 'failed')
print(f"总模拟因子数: {len(results)}")
print(f"成功: {success_count}")
print(f"模拟错误: {error_count}")
print(f"执行异常: {failed_count}")
print(f"总耗时: {format_time(total_time)}")
print(f"{'=' * 60}")
for i, result in enumerate(results, 1):
status_icon = "" if result.status == 'success' else ""
print(f"{i}. {status_icon} {result.expression}")
print(f" 状态: {result.status}")
print(f" 耗时: {result.formatted_time}")
print(f" Alpha ID: {result.alpha_id}")
if result.status != 'success':
print(f" 原因: {result.description}")
print()

@ -0,0 +1,168 @@
{
"schema": {
"name": "yearly-stats",
"title": "Yearly Stats",
"properties": [
{
"name": "year",
"title": "Year",
"type": "year"
},
{
"name": "pnl",
"title": "PnL",
"type": "amount"
},
{
"name": "bookSize",
"title": "Book Size",
"type": "amount"
},
{
"name": "longCount",
"title": "Long Count",
"type": "integer"
},
{
"name": "shortCount",
"title": "Short Count",
"type": "integer"
},
{
"name": "turnover",
"title": "Turnover",
"type": "percent"
},
{
"name": "sharpe",
"title": "Sharpe",
"type": "decimal"
},
{
"name": "returns",
"title": "Returns",
"type": "percent"
},
{
"name": "drawdown",
"title": "Drawdown",
"type": "percent"
},
{
"name": "margin",
"title": "Margin",
"type": "permyriad"
},
{
"name": "fitness",
"title": "Fitness",
"type": "decimal"
},
{
"name": "stage",
"title": "Stage",
"type": "string"
}
]
},
"records": [
[
"2018",
347052.0,
20000000,
1081,
1083,
0.3727,
1.54,
0.0365,
0.0156,
0.000196,
0.48,
"TRAIN"
],
[
"2019",
190205.0,
20000000,
1364,
1359,
0.3659,
0.83,
0.0189,
0.0353,
0.000103,
0.19,
"TRAIN"
],
[
"2020",
1554201.0,
20000000,
1348,
1340,
0.3639,
4.49,
0.1682,
0.0145,
0.000925,
3.05,
"TRAIN"
],
[
"2021",
584087.0,
20000000,
1435,
1424,
0.3652,
1.41,
0.0579,
0.0253,
0.000317,
0.56,
"TRAIN"
],
[
"2022",
31117.0,
20000000,
1441,
1434,
0.3446,
2.08,
0.0648,
0.004,
0.000376,
0.9,
"TRAIN"
],
[
"2022",
443804.0,
20000000,
1415,
1417,
0.3623,
1.19,
0.0464,
0.0349,
0.000256,
0.43,
"TEST"
],
[
"2023",
68779.0,
20000000,
1405,
1394,
0.3554,
6.22,
0.1323,
0.0019,
0.000744,
3.79,
"TEST"
]
]
}

@ -0,0 +1,137 @@
{
"id": "KP0WWZ6l",
"type": "REGULAR",
"author": "YC93384",
"settings": {
"instrumentType": "EQUITY",
"region": "USA",
"universe": "TOP3000",
"delay": 1,
"decay": 0,
"neutralization": "SUBINDUSTRY",
"truncation": 0.08,
"pasteurization": "ON",
"unitHandling": "VERIFY",
"nanHandling": "OFF",
"maxTrade": "OFF",
"language": "FASTEXPR",
"visualization": false,
"startDate": "2018-01-20",
"endDate": "2023-01-20",
"testPeriod": "P1Y"
},
"regular": {
"code": "rank(ts_sum(vec_avg(nws12_afterhsz_sl), 60)) * 0.7 + rank(-ts_delta(close, 2)) * 0.3",
"description": null,
"operatorCount": 9
},
"dateCreated": "2025-11-13T09:22:47-05:00",
"dateSubmitted": null,
"dateModified": "2025-11-13T09:22:47-05:00",
"name": null,
"favorite": false,
"hidden": false,
"color": null,
"category": null,
"tags": [],
"classifications": [],
"grade": "INFERIOR",
"stage": "IS",
"status": "UNSUBMITTED",
"is": {
"pnl": 3219244,
"bookSize": 20000000,
"longCount": 1332,
"shortCount": 1328,
"turnover": 0.3657,
"returns": 0.0651,
"drawdown": 0.0353,
"margin": 0.000356,
"sharpe": 1.93,
"fitness": 0.81,
"startDate": "2018-01-20",
"checks": [
{
"name": "LOW_SHARPE",
"result": "PASS",
"limit": 1.25,
"value": 1.93
},
{
"name": "LOW_FITNESS",
"result": "FAIL",
"limit": 1.0,
"value": 0.81
},
{
"name": "LOW_TURNOVER",
"result": "PASS",
"limit": 0.01,
"value": 0.3657
},
{
"name": "HIGH_TURNOVER",
"result": "PASS",
"limit": 0.7,
"value": 0.3657
},
{
"name": "CONCENTRATED_WEIGHT",
"result": "PASS"
},
{
"name": "LOW_SUB_UNIVERSE_SHARPE",
"result": "PASS",
"limit": 0.84,
"value": 1.7
},
{
"name": "SELF_CORRELATION",
"result": "PENDING"
},
{
"name": "MATCHES_COMPETITION",
"result": "PASS",
"competitions": [
{
"id": "challenge",
"name": "Challenge"
}
]
}
]
},
"os": null,
"train": {
"pnl": 2718449,
"bookSize": 20000000,
"longCount": 1311,
"shortCount": 1306,
"turnover": 0.3665,
"returns": 0.0689,
"drawdown": 0.0353,
"margin": 0.000376,
"fitness": 0.92,
"sharpe": 2.13,
"startDate": "2018-01-20"
},
"test": {
"pnl": 512583,
"bookSize": 20000000,
"longCount": 1415,
"shortCount": 1416,
"turnover": 0.362,
"returns": 0.0509,
"drawdown": 0.0349,
"margin": 0.000281,
"fitness": 0.5,
"sharpe": 1.33,
"startDate": "2022-01-20"
},
"prod": null,
"competitions": null,
"themes": null,
"pyramids": null,
"pyramidThemes": null,
"team": null
}

@ -0,0 +1,22 @@
{
"id": "3q4OCMgw4MFa8k16tdsYLml",
"type": "REGULAR",
"settings": {
"instrumentType": "EQUITY",
"region": "USA",
"universe": "TOP3000",
"delay": 1,
"decay": 0,
"neutralization": "SUBINDUSTRY",
"truncation": 0.08,
"pasteurization": "ON",
"unitHandling": "VERIFY",
"nanHandling": "OFF",
"maxTrade": "OFF",
"language": "FASTEXPR",
"visualization": false
},
"regular": "rank(ts_sum(vec_avg(nws12_afterhsz_sl), 60)) * 0.7 + rank(-ts_delta(close, 2)) * 0.3",
"status": "COMPLETE",
"alpha": "KP0WWZ6l"
}

@ -0,0 +1,9 @@
# -*- coding: utf-8 -*-
"""
工具模块 - 包含各种工具函数
"""
from .file_utils import load_alpha_list, save_results_to_file
from .time_utils import format_time
__all__ = ['load_alpha_list', 'save_results_to_file', 'format_time']

@ -0,0 +1,59 @@
# -*- coding: utf-8 -*-
import os
import json
import time
from typing import List, Any
def load_alpha_list(file_path: str) -> List[str]:
"""从文件加载Alpha因子列表"""
if not os.path.exists(file_path):
print(f"{file_path} 文件不存在")
with open(file_path, 'w', encoding='utf-8') as file:
file.write("")
print(f"已创建 {file_path} 文件, 请添加因子后重新运行, 一行一个因子")
return []
with open(file_path, 'r', encoding='utf-8') as file:
alpha_list = [line.strip() for line in file if line.strip()]
return alpha_list
def save_results_to_file(results: List[Any], result_dir: str = 'result') -> str:
"""保存结果到文件"""
# 转换为可序列化的格式
serializable_results = []
for result in results:
if hasattr(result, '__dict__'):
# 如果是dataclass对象
result_dict = result.__dict__.copy()
else:
# 如果是字典
result_dict = result.copy()
# 处理时间消耗
if 'time_consuming' in result_dict:
result_dict['time_consuming'] = round(result_dict['time_consuming'], 2)
# 处理metrics对象
for key in list(result_dict.keys()):
if hasattr(result_dict[key], '__dict__'):
result_dict[key] = result_dict[key].__dict__
# 处理浮点数精度
for metric_key, value in result_dict[key].items():
if isinstance(value, float):
result_dict[key][metric_key] = round(value, 6)
serializable_results.append(result_dict)
# 确保结果目录存在
if not os.path.exists(result_dir):
os.makedirs(result_dir)
result_name = f"{result_dir}/simulation_results-{str(int(time.time()))}.json"
with open(result_name, 'w', encoding='utf-8') as f:
json.dump(serializable_results, f, ensure_ascii=False, indent=2)
print(f"结果已保存到 {result_name}")
return result_name

@ -0,0 +1,9 @@
# -*- coding: utf-8 -*-
def format_time(seconds: float) -> str:
"""将秒数格式化为 xx分xx秒 格式"""
if seconds < 60:
return f"{seconds:.2f}"
else:
minutes = int(seconds // 60)
remaining_seconds = seconds % 60
return f"{minutes}{remaining_seconds:.2f}"
Loading…
Cancel
Save