Jack 2 weeks ago
parent cf56e4e9dc
commit 953772d5e0
  1. 6
      combination_alpha.py
  2. 998
      expression_validator.py
  3. 77
      generated_alpha/2026/01/19/deepseek-ai_DeepSeek-V3.2-Exp_141836.txt
  4. 60
      parsetab.py

@ -18,11 +18,11 @@ origin_alpha = 'add({call_price}, {put_price}) - abs(ts_delta({close}, 1))'
def combina_alpha():
pass
def save_alpha()
def save_alpha():
pass
def main():
pass
if __name__ == "__main__":

@ -0,0 +1,998 @@
# !/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
表达式验证器 - 使用抽象语法树验证字符串表达式格式是否正确
本模块实现了一个能够检测字符串表达式格式是否正确的系统基于PLY(Python Lex-Yacc)
构建词法分析器和语法分析器识别表达式中的操作符函数和字段并验证其格式正确性
"""
import re
import sys
import json
import os
from typing import List, Dict, Any, Optional, Tuple
# 尝试导入PLY库,如果不存在则提供安装提示
try:
import ply.lex as lex
import ply.yacc as yacc
except ImportError:
print("错误: 需要安装PLY库。请运行 'pip install ply' 来安装。")
sys.exit(1)
# 1. 定义支持的操作符和函数
supported_functions = {
# Group 类别函数
'group_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_mean': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']},
'group_median': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_rank': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_vector_proj': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'category']},
'group_normalize': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'category', 'expression', 'expression', 'expression']},
'group_extra': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'category']},
'group_backfill': {'min_args': 3, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'expression'], 'param_names': ['x', 'cat', 'days', 'std']},
'group_scale': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_count': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_zscore': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_std_dev': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_sum': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_neutralize': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']},
'group_multi_regression': {'min_args': 4, 'max_args': 9, 'arg_types': ['expression'] * 9},
'group_cartesian_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['category', 'category']},
'combo_a': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']},
# Transformational 类别函数
'right_tail': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'bucket': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 第二个参数可以是string类型的range参数
'tail': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'expression']},
'left_tail': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'trade_when': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']},
'generate_stats': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
# Cross Sectional 类别函数
'winsorize': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression'], 'param_names': ['x', 'std']},
'rank': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'regression_proj': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'vector_neut': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'regression_neut': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'multi_regression': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # 支持多个自变量
# Time Series 类别函数
'ts_std_dev': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_mean': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_delay': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_corr': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']},
'ts_zscore': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_returns': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'mode']},
'ts_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_backfill': {'min_args': 2, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'string']},
'days_from_last_change': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'last_diff_value': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_scale': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']},
'ts_entropy': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number'], 'param_names': ['x', 'd', 'buckets']},
'ts_step': {'min_args': 1, 'max_args': 1, 'arg_types': ['number']},
'ts_sum': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_co_kurtosis': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']},
'inst_tvr': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_decay_exp_window': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'factor']},
'ts_av_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_kurtosis': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_min_max_diff': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']},
'ts_arg_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_min_max_cps': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']},
'ts_rank': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']},
'ts_ir': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_theilsen': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']},
'hump_decay': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_weighted_decay': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_quantile': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'string']},
'ts_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_count_nans': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_covariance': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']},
'ts_co_skewness': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']},
'ts_min_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_decay_linear': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'boolean']},
'jump_decay': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'number', 'expression', 'number', 'number'],
'param_names': ['x', 'd', 'stddev', 'sensitivity', 'force']},
'ts_moment': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'k']},
'ts_arg_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_regression': {'min_args': 3, 'max_args': 5, 'arg_types': ['expression', 'expression', 'number', 'number', 'number'], 'param_names': ['y', 'x', 'd', 'lag', 'rettype']},
'ts_skewness': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_max_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'kth_element': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']},
'hump': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'hump']},
'ts_median': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_delta': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_poly_regression': {'min_args': 3, 'max_args': 4, 'arg_types': ['expression', 'expression', 'number', 'number']},
'ts_target_tvr_decay': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'number'],
'param_names': ['x', 'lambda_min', 'lambda_max', 'target_tvr']},
'ts_target_tvr_delta_limit': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'expression', 'number', 'number', 'number']},
'ts_target_tvr_hump': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'number']},
'ts_delta_limit': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']},
# Special 类别函数
'inst_pnl': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'self_corr': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'in': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字
'universe_size': {'min_args': 0, 'max_args': 0, 'arg_types': []},
# Missing functions from operators.py
'quantile': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'driver', 'sigma']},
# quantile(x, driver = gaussian, sigma = 1.0)
'normalize': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'boolean', 'number']}, # normalize(x, useStd = false, limit = 0.0)
'zscore': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # zscore(x)
# Logical 类别函数
'or': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字
'and': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字
'not': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # 注意:这是关键字
'is_nan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'is_not_nan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'less': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'greater': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'is_finite': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'if_else': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']},
'not_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'less_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'greater_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
# Vector 类别函数
'vec_kurtosis': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_min': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_count': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_sum': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_skewness': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_max': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_avg': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_range': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_choose': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'nth']},
'vec_powersum': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'constant']},
'vec_stddev': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_percentage': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'percentage']},
'vec_ir': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'vec_norm': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'ts_percentage': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'percentage']},
'signed_power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
'ts_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']},
# Additional functions from test cases
'rank_by_side': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'rate', 'scale']},
'log_diff': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'nan_mask': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']},
'ts_partial_corr': {'min_args': 4, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'number']},
'ts_triple_corr': {'min_args': 4, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'number']},
'clamp': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'lower', 'upper']},
'keep': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number'], 'param_names': ['x', 'condition', 'period']},
'replace': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'target', 'dest']},
'filter': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'h', 't']},
'one_side': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'string'], 'param_names': ['x', 'side']},
'scale_down': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'constant']},
# Arithmetic 类别函数
'add': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # add(x, y, filter=false)
'multiply': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 99 + ['boolean'], 'param_names': ['x', 'y', 'filter']}, # multiply(x, y, ..., filter=false)
'sign': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'subtract': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # subtract(x, y, filter=false)
'pasteurize': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'log': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'purify': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'arc_tan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'max': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # max(x, y, ...)
'to_nan': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # to_nan(x, value=0, reverse=false)
'abs': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'sigmoid': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'divide': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # divide(x, y)
'min': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # min(x, y, ...)
'tanh': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'nan_out': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'lower', 'upper']}, # nan_out(x, lower=0, upper=0)
'signed_power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # signed_power(x, y)
'inverse': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'round': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'sqrt': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
's_log_1p': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'reverse': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # -x
'power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # power(x, y)
'densify': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
'floor': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']},
}
# 2. 定义group类型字段
group_fields = {
'sector', 'subindustry', 'industry', 'exchange', 'country', 'market'
}
# 3. 有效类别集合
valid_categories = group_fields
# 4. 字段命名模式 - 只校验字段是不是数字字母下划线组成
field_patterns = [
re.compile(r'^[a-zA-Z0-9_]+$'), # 只允许数字、字母和下划线组成的字段名
]
# 4. 抽象语法树节点类型
class ASTNode:
"""抽象语法树节点基类"""
def __init__(self, node_type: str, children: Optional[List['ASTNode']] = None,
value: Optional[Any] = None, line: Optional[int] = None):
self.node_type = node_type # 'function', 'operator', 'field', 'number', 'expression'
self.children = children or []
self.value = value
self.line = line
def __str__(self) -> str:
return f"ASTNode({self.node_type}, {self.value}, line={self.line})"
def __repr__(self) -> str:
return self.__str__()
class ExpressionValidator:
"""表达式验证器类"""
def __init__(self):
"""初始化词法分析器和语法分析器"""
# 构建词法分析器
self.lexer = lex.lex(module=self, debug=False)
# 构建语法分析器
self.parser = yacc.yacc(module=self, debug=False)
# 错误信息存储
self.errors = []
# 词法分析器规则
tokens = ('FUNCTION', 'FIELD', 'NUMBER', 'LPAREN', 'RPAREN',
'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'COMMA', 'CATEGORY',
'EQUAL', 'ASSIGN', 'IDENTIFIER', 'STRING', 'GREATER', 'LESS', 'GREATEREQUAL', 'LESSEQUAL', 'NOTEQUAL', 'BOOLEAN')
# 忽略空白字符
t_ignore = ' \t\n'
# 操作符 - 注意顺序很重要,长的操作符要放在前面
t_PLUS = r'\+'
t_MINUS = r'-'
t_TIMES = r'\*'
t_DIVIDE = r'/'
t_LPAREN = r'\('
t_RPAREN = r'\)'
t_COMMA = r','
t_EQUAL = r'=='
t_NOTEQUAL = r'!='
t_GREATEREQUAL = r'>='
t_LESSEQUAL = r'<='
t_GREATER = r'>'
t_LESS = r'<'
t_ASSIGN = r'='
# 数字(整数和浮点数)
def t_NUMBER(self, t):
r'\d+\.?\d*'
if '.' in t.value:
t.value = float(t.value)
else:
t.value = int(t.value)
return t
# 字符串 - 需要放在所有其他标识符规则之前
def t_STRING(self, t):
r"'[^']*'|\"[^\"]*\""
# 去除引号
t.value = t.value[1:-1]
return t
# 函数和字段名
def t_IDENTIFIER(self, t):
r'[a-zA-Z_][a-zA-Z0-9_]*'
# 检查是否为布尔值
if t.value.lower() in {'true', 'false'}:
t.type = 'BOOLEAN'
t.value = t.value.lower() # 转换为小写以保持一致性
else:
# 查看当前token后面的字符,判断是否为参数名(后面跟着'=')
lexpos = t.lexpos
next_chars = ''
if lexpos + len(t.value) < len(t.lexer.lexdata):
# 查看当前token后面的字符,跳过空格
next_pos = lexpos + len(t.value)
while next_pos < len(t.lexer.lexdata) and t.lexer.lexdata[next_pos].isspace():
next_pos += 1
if next_pos < len(t.lexer.lexdata):
next_chars = t.lexer.lexdata[next_pos:next_pos + 1]
# 如果后面跟着'=',则为参数名
if next_chars == '=':
t.type = 'IDENTIFIER'
# 如果后面跟着'(',则为函数名
elif next_chars == '(':
t.type = 'FUNCTION'
t.value = t.value.lower() # 转换为小写以保持一致性
# 检查是否为参数名(支持更多参数名)
elif t.value in {'std', 'k', 'lambda_min', 'lambda_max', 'target_tvr', 'range', 'buckets', 'lag', 'rettype', 'mode', 'nth', 'constant', 'percentage', 'driver', 'sigma',
'rate', 'scale', 'filter', 'lower', 'upper', 'target', 'dest', 'event', 'sensitivity', 'force', 'h', 't', 'period', 'stddev', 'factor', 'k', 'useStd',
'limit', 'gaussian', 'uniform', 'cauchy'}:
t.type = 'IDENTIFIER'
# 检查是否为函数名(不区分大小写)
elif t.value.lower() in supported_functions:
t.type = 'FUNCTION'
t.value = t.value.lower() # 转换为小写以保持一致性
# 检查是否为有效类别
elif t.value in valid_categories:
t.type = 'CATEGORY'
# 检查是否为字段名
elif self._is_valid_field(t.value):
t.type = 'FIELD'
else:
# 其他标识符,保留为IDENTIFIER类型
t.type = 'IDENTIFIER'
return t
# 行号跟踪
def t_newline(self, t):
r'\n+'
t.lexer.lineno += len(t.value)
# 错误处理
def t_error(self, t):
if t:
# 检查是否为非法字符
if not re.match(r'[a-zA-Z0-9_\+\-\*/\(\)\,\s=<>!]', t.value[0]):
# 这是一个非法字符
self.errors.append(f"非法字符 '{t.value[0]}' (行 {t.lexer.lineno})")
else:
# 这是一个非法标记
self.errors.append(f"非法标记 '{t.value}' (行 {t.lexer.lineno})")
# 跳过这个字符,继续处理
t.lexer.skip(1)
else:
self.errors.append("词法分析器到达文件末尾")
# 语法分析器规则
def p_expression(self, p):
"""expression : comparison
| expression EQUAL comparison
| expression NOTEQUAL comparison
| expression GREATER comparison
| expression LESS comparison
| expression GREATEREQUAL comparison
| expression LESSEQUAL comparison"""
if len(p) == 2:
p[0] = p[1]
else:
p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]})
def p_comparison(self, p):
"""comparison : term
| comparison PLUS term
| comparison MINUS term"""
if len(p) == 2:
p[0] = p[1]
else:
p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]})
def p_term(self, p):
"""term : factor
| term TIMES factor
| term DIVIDE factor"""
if len(p) == 2:
p[0] = p[1]
else:
p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]})
def p_factor(self, p):
"""factor : NUMBER
| STRING
| FIELD
| CATEGORY
| IDENTIFIER
| BOOLEAN
| MINUS factor
| LPAREN expression RPAREN
| function_call"""
if len(p) == 2:
# 数字、字符串、字段、类别或标识符
if p.slice[1].type == 'NUMBER':
p[0] = ASTNode('number', value=p[1])
elif p.slice[1].type == 'STRING':
p[0] = ASTNode('string', value=p[1])
elif p.slice[1].type == 'FIELD':
p[0] = ASTNode('field', value=p[1])
elif p.slice[1].type == 'CATEGORY':
p[0] = ASTNode('category', value=p[1])
elif p.slice[1].type == 'BOOLEAN':
p[0] = ASTNode('boolean', value=p[1])
elif p.slice[1].type == 'IDENTIFIER':
p[0] = ASTNode('identifier', value=p[1])
else:
p[0] = p[1]
elif len(p) == 3:
# 一元负号
p[0] = ASTNode('unop', [p[2]], {'op': p[1]})
elif len(p) == 4:
# 括号表达式
p[0] = p[2]
else:
# 函数调用
p[0] = p[1]
def p_function_call(self, p):
'''function_call : FUNCTION LPAREN args RPAREN'''
p[0] = ASTNode('function', p[3], p[1])
def p_args(self, p):
'''args : arg_list
| empty'''
if len(p) == 2 and p[1] is not None:
p[0] = p[1]
else:
p[0] = []
def p_arg_list(self, p):
'''arg_list : arg
| arg_list COMMA arg'''
if len(p) == 2:
p[0] = [p[1]]
else:
p[0] = p[1] + [p[3]]
def p_arg(self, p):
'''arg : expression
| IDENTIFIER ASSIGN expression'''
if len(p) == 2:
p[0] = {'type': 'positional', 'value': p[1]}
else:
p[0] = {'type': 'named', 'name': p[1], 'value': p[3]}
def p_empty(self, p):
'''empty :'''
p[0] = None
# 语法错误处理
def p_error(self, p):
if p:
self.errors.append(f"语法错误在位置 {p.lexpos}: 非法标记 '{p.value}'")
else:
self.errors.append("语法错误: 表达式不完整")
def _is_valid_field(self, field_name: str) -> bool:
"""检查字段名是否符合模式"""
for pattern in field_patterns:
if pattern.match(field_name):
return True
return False
def validate_function(self, node: ASTNode, is_in_group_arg: bool = False) -> List[str]:
"""验证函数调用的参数数量和类型"""
function_name = node.value
args = node.children
function_info = supported_functions.get(function_name)
if not function_info:
return [f"未知函数: {function_name}"]
errors = []
# 检查参数数量
if len(args) < function_info['min_args']:
errors.append(f"函数 {function_name} 需要至少 {function_info['min_args']} 个参数,但只提供了 {len(args)}")
elif len(args) > function_info['max_args']:
errors.append(f"函数 {function_name} 最多接受 {function_info['max_args']} 个参数,但提供了 {len(args)}")
# 处理参数验证
# 跟踪已使用的位置参数索引
positional_index = 0
# 对于所有函数,支持命名参数
for arg in args:
if isinstance(arg, dict):
if arg['type'] == 'named':
# 命名参数
if 'param_names' in function_info and arg['name'] in function_info['param_names']:
# 查找参数在param_names中的索引
param_index = function_info['param_names'].index(arg['name'])
if param_index < len(function_info['arg_types']):
expected_type = function_info['arg_types'][param_index]
arg_errors = self._validate_arg_type(arg['value'], expected_type, param_index, function_name, is_in_group_arg)
errors.extend(arg_errors)
# 对于winsorize函数,支持std和clip参数
elif function_name == 'winsorize' and arg['name'] in ['std', 'clip']:
arg_errors = self._validate_arg_type(arg['value'], 'number', 0, function_name, is_in_group_arg)
errors.extend(arg_errors)
# 对于bucket函数,支持'range'和'buckets'参数
elif function_name == 'bucket' and arg['name'] in ['range', 'buckets']:
# range和buckets参数应该是string类型
arg_errors = self._validate_arg_type(arg['value'], 'string', 1, function_name, is_in_group_arg)
errors.extend(arg_errors)
else:
errors.append(f"函数 {function_name} 不存在参数 '{arg['name']}'")
elif arg['type'] == 'positional':
# 位置参数(字典形式)
# 对于winsorize函数,第二个参数必须是命名参数
if function_name == 'winsorize' and positional_index == 1:
errors.append(f"函数 {function_name} 的第二个参数必须使用命名参数 'std='")
# 对于ts_moment函数,第三个参数必须是命名参数
elif function_name == 'ts_moment' and positional_index == 2:
errors.append(f"函数 {function_name} 的第三个参数必须使用命名参数 'k='")
else:
# 验证位置参数的类型
if positional_index < len(function_info['arg_types']):
expected_type = function_info['arg_types'][positional_index]
arg_errors = self._validate_arg_type(arg['value'], expected_type, positional_index, function_name, is_in_group_arg)
errors.extend(arg_errors)
positional_index += 1
else:
# 其他字典类型参数
errors.append(f"参数 {positional_index + 1} 格式错误")
positional_index += 1
else:
# 位置参数(直接ASTNode形式)
# 对于winsorize函数,第二个参数必须是命名参数
if function_name == 'winsorize' and positional_index == 1:
errors.append(f"函数 {function_name} 的第二个参数必须使用命名参数 'std='")
# 对于ts_moment函数,第三个参数必须是命名参数
elif function_name == 'ts_moment' and positional_index == 2:
errors.append(f"函数 {function_name} 的第三个参数必须使用命名参数 'k='")
else:
# 验证位置参数的类型
if positional_index < len(function_info['arg_types']):
expected_type = function_info['arg_types'][positional_index]
arg_errors = self._validate_arg_type(arg, expected_type, positional_index, function_name, is_in_group_arg)
errors.extend(arg_errors)
positional_index += 1
return errors
def _validate_arg_type(self, arg: ASTNode, expected_type: str, arg_index: int, function_name: str, is_in_group_arg: bool = False) -> List[str]:
"""验证参数类型是否符合预期"""
errors = []
# 首先检查是否是group类型字段,如果是则只能用于Group类型函数
# 但是如果当前函数是group_xxx或在group函数的参数链中,则允许使用
if arg.node_type == 'category' and arg.value in group_fields:
if not (function_name.startswith('group_') or is_in_group_arg):
errors.append(f"Group类型字段 '{arg.value}' 只能用于Group类型函数的参数中")
# 然后验证参数类型是否符合预期
if expected_type == 'expression':
# 表达式可以是任何有效的AST节点
pass
elif expected_type == 'number':
if arg.node_type != 'number':
errors.append(f"参数 {arg_index + 1} 应该是一个数字,但得到 {arg.node_type}")
elif expected_type == 'boolean':
# 布尔值可以是数字(0/1)
if arg.node_type != 'number':
errors.append(f"参数 {arg_index + 1} 应该是一个布尔值(0/1),但得到 {arg.node_type}")
elif expected_type == 'field':
if arg.node_type != 'field' and arg.node_type != 'category':
# 允许field或category作为字段参数
errors.append(f"参数 {arg_index + 1} 应该是一个字段,但得到 {arg.node_type}")
elif arg.node_type == 'field' and not self._is_valid_field(arg.value):
errors.append(f"无效的字段名: {arg.value}")
elif expected_type == 'category':
if not function_name.startswith('group_'):
# 非group函数的category参数必须是category类型且在valid_categories中
if arg.node_type != 'category':
errors.append(f"参数 {arg_index + 1} 应该是一个类别,但得到 {arg.node_type}")
elif arg.value not in valid_categories:
errors.append(f"无效的类别: {arg.value}")
# group函数的category参数可以是任何类型(field、category等),不进行类型校验
return errors
def validate_ast(self, ast: Optional[ASTNode], is_in_group_arg: bool = False) -> List[str]:
"""递归验证抽象语法树"""
if not ast:
return ["无法解析表达式"]
errors = []
# 根据节点类型进行验证
if ast.node_type == 'function':
# 检查当前函数是否是group函数
is_group_function = ast.value.startswith('group_')
# 确定当前是否在group函数的参数链中
current_in_group_arg = is_in_group_arg or is_group_function
# 验证函数
function_errors = self.validate_function(ast, current_in_group_arg)
errors.extend(function_errors)
# 递归验证子节点时使用current_in_group_arg
for child in ast.children:
if isinstance(child, dict):
# 命名参数,验证其值
if 'value' in child and hasattr(child['value'], 'node_type'):
child_errors = self.validate_ast(child['value'], current_in_group_arg)
errors.extend(child_errors)
elif hasattr(child, 'node_type'):
child_errors = self.validate_ast(child, current_in_group_arg)
errors.extend(child_errors)
elif ast.node_type in ['unop', 'binop']:
# 对操作符的子节点进行验证
for child in ast.children:
if hasattr(child, 'node_type'):
child_errors = self.validate_ast(child, is_in_group_arg)
errors.extend(child_errors)
elif ast.node_type == 'field':
# 验证字段名
if not self._is_valid_field(ast.value):
errors.append(f"无效的字段名: {ast.value}")
else:
# 递归验证子节点
for child in ast.children:
if isinstance(child, dict):
# 命名参数,验证其值
if 'value' in child and hasattr(child['value'], 'node_type'):
child_errors = self.validate_ast(child['value'], is_in_group_arg)
errors.extend(child_errors)
elif hasattr(child, 'node_type'):
child_errors = self.validate_ast(child, is_in_group_arg)
errors.extend(child_errors)
return errors
def _process_semicolon_expression(self, expression: str) -> Tuple[bool, str]:
"""处理带有分号的表达式,将其转换为不带分号的简化形式
Args:
expression: 要处理的表达式字符串
Returns:
Tuple[bool, str]: (是否成功, 转换后的表达式或错误信息)
"""
# 检查表达式是否以分号结尾
if expression.strip().endswith(';'):
return False, "表达式不能以分号结尾"
# 分割表达式为语句列表
statements = [stmt.strip() for stmt in expression.split(';') if stmt.strip()]
if not statements:
return False, "表达式不能为空"
# 存储变量赋值
variables = {}
# 处理每个赋值语句(除了最后一个)
for i, stmt in enumerate(statements[:-1]):
# 检查是否包含赋值符号
if '=' not in stmt:
return False, f"{i + 1}个语句必须是赋值语句(使用=符号)"
# 检查是否是比较操作符(==, !=, <=, >=)
if any(op in stmt for op in ['==', '!=', '<=', '>=']):
# 如果包含比较操作符,需要确认是否有赋值符号
# 使用临时替换法:将比较操作符替换为临时标记,再检查是否还有=
temp_stmt = stmt
for op in ['==', '!=', '<=', '>=']:
temp_stmt = temp_stmt.replace(op, '---')
if '=' not in temp_stmt:
return False, f"{i + 1}个语句必须是赋值语句,不能只是比较表达式"
# 找到第一个=符号(不是比较操作符的一部分)
# 先将比较操作符替换为临时标记,再找=
temp_stmt = stmt
for op in ['==', '!=', '<=', '>=']:
temp_stmt = temp_stmt.replace(op, '---')
if '=' not in temp_stmt:
return False, f"{i + 1}个语句必须是赋值语句(使用=符号)"
# 找到实际的=位置
equals_pos = temp_stmt.index('=')
# 在原始语句中找到对应位置
real_equals_pos = 0
temp_count = 0
for char in stmt:
if temp_count == equals_pos:
break
if char in '!<>':
# 检查是否是比较操作符的一部分
if real_equals_pos + 1 < len(stmt) and stmt[real_equals_pos + 1] == '=':
# 是比较操作符,跳过两个字符
real_equals_pos += 2
temp_count += 3 # 因为替换成了三个字符的---
else:
real_equals_pos += 1
temp_count += 1
else:
real_equals_pos += 1
temp_count += 1
# 分割变量名和值
var_name = stmt[:real_equals_pos].strip()
var_value = stmt[real_equals_pos + 1:].strip()
# 检查变量名是否有效
if not re.match(r'^[a-zA-Z_][a-zA-Z0-9_]*$', var_name):
return False, f"{i + 1}个语句的变量名'{var_name}'无效,只能包含字母、数字和下划线,且不能以数字开头"
var_name_lower = var_name.lower() # 变量名不区分大小写
# 检查变量名是否在后续表达式中使用
# 这里不需要,因为后面的表达式会检查
# 检查变量值中使用的变量是否已经定义
# 简单检查:提取所有可能的变量名
used_vars = re.findall(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', var_value)
for used_var in used_vars:
used_var_lower = used_var.lower()
if used_var_lower not in variables:
# 检查是否是函数名
if used_var not in supported_functions:
# 对于单个字母或简单单词,不自动视为字段名,要求先定义
if len(used_var) <= 2:
return False, f"{i + 1}个语句中使用的变量'{used_var}'未在之前定义"
# 对于较长的字段名,仍然允许作为字段名
elif not self._is_valid_field(used_var):
return False, f"{i + 1}个语句中使用的变量'{used_var}'未在之前定义"
# 将之前定义的变量替换到当前值中
for existing_var, existing_val in variables.items():
# 使用单词边界匹配,避免替换到其他单词的一部分
var_value = re.sub(rf'\b{existing_var}\b', existing_val, var_value)
# 存储变量
variables[var_name_lower] = var_value
# 处理最后一个语句(实际的表达式)
final_stmt = statements[-1]
# 检查最后一个语句是否是赋值语句
if '=' in final_stmt:
# 替换比较操作符为临时标记,然后检查是否还有单独的=
temp_stmt = final_stmt
for op in ['==', '!=', '<=', '>=']:
temp_stmt = temp_stmt.replace(op, '---')
if '=' in temp_stmt:
return False, "最后一个语句不能是赋值语句"
# 检查最后一个语句中使用的变量是否已经定义
used_vars = re.findall(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', final_stmt)
for used_var in used_vars:
used_var_lower = used_var.lower()
if used_var_lower not in variables:
# 检查是否是函数名
if used_var not in supported_functions:
# 在分号表达式中,所有非函数名的标识符都必须是变量,必须在之前定义
return False, f"最后一个语句中使用的变量'{used_var}'未在之前定义"
# 将变量替换到最后一个表达式中
final_expr = final_stmt
for var_name, var_value in variables.items():
final_expr = re.sub(rf'\b{var_name}\b', var_value, final_expr)
return True, final_expr
def check_expression(self, expression: str) -> Dict[str, Any]:
"""
检查表达式格式是否正确
Args:
expression: 要验证的表达式字符串
Returns:
包含验证结果的字典
"""
# 重置错误列表
self.errors = []
try:
expression = expression.strip()
if not expression:
return {
'valid': False,
'errors': ['表达式不能为空'],
'tokens': [],
'ast': None
}
# 处理带有分号的表达式
if ';' in expression:
success, result = self._process_semicolon_expression(expression)
if not success:
return {
'valid': False,
'errors': [result],
'tokens': [],
'ast': None
}
expression = result
# 重置词法分析器的行号
self.lexer.lineno = 1
# 词法分析(用于调试)
self.lexer.input(expression)
tokens = []
# 调试:打印识别的标记
print(f"\n调试 - 表达式: {expression}")
print("识别的标记:")
for token in self.lexer:
print(f" - 类型: {token.type}, 值: '{token.value}', 位置: {token.lexpos}")
tokens.append(token)
# 重新设置词法分析器的输入,以便语法分析器使用
self.lexer.input(expression)
self.lexer.lineno = 1
# 语法分析
ast = self.parser.parse(expression, lexer=self.lexer)
# 验证AST
validation_errors = self.validate_ast(ast)
# 合并所有错误
all_errors = self.errors + validation_errors
# 检查括号是否匹配
bracket_count = 0
for char in expression:
if char == '(':
bracket_count += 1
elif char == ')':
bracket_count -= 1
if bracket_count < 0:
all_errors.append("括号不匹配: 右括号过多")
break
if bracket_count > 0:
all_errors.append("括号不匹配: 左括号过多")
return {
'valid': len(all_errors) == 0,
'errors': all_errors,
'tokens': tokens,
'ast': ast
}
except Exception as e:
return {
'valid': False,
'errors': [f"解析错误: {str(e)}"],
'tokens': [],
'ast': None
}
def main():
"""主函数 - 用于验证表达式并输出结果"""
validator = ExpressionValidator()
# 获取当前日期
import datetime
today = datetime.datetime.now()
year = str(today.year)
month = str(today.month).zfill(2) # 补齐两位
day = str(today.day).zfill(2) # 补齐两位
# 构建TXT文件路径
base_dir = os.path.dirname(os.path.abspath(__file__)) # 获取当前py文件所在目录
generated_alpha_dir = os.path.join(base_dir, "generated_alpha", year, month, day)
# 检查文件夹是否存在
if not os.path.exists(generated_alpha_dir):
print(f"错误: 今天的alpha文件夹不存在: {generated_alpha_dir}")
print("请确保AI已经生成了今天的alpha表达式")
return
# 查找所有的TXT文件
txt_files = [f for f in os.listdir(generated_alpha_dir) if f.endswith('.txt')]
if not txt_files:
print(f"错误: 在 {generated_alpha_dir} 目录下没有找到TXT文件")
return
print(f"找到 {len(txt_files)} 个TXT文件:")
for txt_file in txt_files:
print(f" - {txt_file}")
# 收集所有表达式
all_expressions = []
# 读取所有TXT文件
for txt_file in txt_files:
file_path = os.path.join(generated_alpha_dir, txt_file)
try:
with open(file_path, 'r', encoding='utf-8') as f:
# 读取所有行,去除空行和两端的空白字符
expressions = [line.strip() for line in f.readlines() if line.strip()]
all_expressions.extend(expressions)
print(f"已从 {txt_file} 读取 {len(expressions)} 个表达式")
except Exception as e:
print(f"警告: 读取文件 {txt_file} 失败 - {e}")
continue
if not all_expressions:
print("错误: 所有TXT文件都是空的或只包含空行")
return
print(f"\n总共需要验证 {len(all_expressions)} 个表达式...")
# 验证表达式
valid_expressions = []
invalid_expressions = []
for i, expr in enumerate(all_expressions, 1):
if i % 10 == 0:
print(f"已验证 {i}/{len(all_expressions)} 个表达式")
result = validator.check_expression(expr)
if result["valid"]:
valid_expressions.append(expr)
else:
invalid_expressions.append({
"expression": expr,
"errors": result["errors"]
})
# 打印错误信息(可选)
print(f"表达式 {i} 验证失败: {expr}")
if result["errors"]:
for error in result["errors"]:
print(f" - {error}")
# 保存有效表达式到 .手动处理每天alpha.txt
if valid_expressions:
output_path = os.path.join(base_dir, "手动处理每天alpha.txt")
try:
with open(output_path, 'w', encoding='utf-8') as f:
# 每个表达式一行
for expr in valid_expressions:
f.write(expr + "\n")
print(f"有效表达式已保存到: {output_path}")
# 如果需要,也可以保留源文件名信息
# source_info_path = os.path.join(base_dir, "手动处理每天alpha_source_info.txt")
# with open(source_info_path, 'w', encoding='utf-8') as f:
# f.write(f"生成日期: {year}-{month}-{day}\n")
# f.write(f"源文件数量: {len(txt_files)}\n")
# f.write(f"源文件列表: {', '.join(txt_files)}\n")
# f.write(f"总表达式数: {len(all_expressions)}\n")
# f.write(f"有效表达式数: {len(valid_expressions)}\n")
# f.write(f"无效表达式数: {len(invalid_expressions)}\n")
except Exception as e:
print(f"错误: 保存有效表达式失败 - {e}")
else:
print("没有有效表达式可保存")
# 输出无效表达式详细信息
if invalid_expressions:
print("\n==========================")
print("无效表达式详细信息:")
print("==========================")
# 按错误类型统计
error_stats = {}
for item in invalid_expressions:
for error in item["errors"]:
# 提取主要错误类型
error_type = error.split(":")[0] if ":" in error else error
error_stats[error_type] = error_stats.get(error_type, 0) + 1
print("\n错误类型统计:")
for error_type, count in error_stats.items():
print(f" {error_type}: {count}")
print("\n无效表达式列表(前20个):")
for i, item in enumerate(invalid_expressions[:20], 1):
print(f"{i}. {item['expression']}")
for error in item["errors"]:
print(f" - {error}")
if len(invalid_expressions) > 20:
print(f"... 还有 {len(invalid_expressions) - 20} 个无效表达式未显示")
else:
print("\n恭喜!所有表达式都验证通过!")
# 输出验证结果
print(f"\n验证完成!")
print(f"总共验证: {len(all_expressions)} 个表达式")
print(f"有效表达式: {len(valid_expressions)}")
print(f"无效表达式: {len(invalid_expressions)}")
if __name__ == "__main__":
main()

@ -1,77 +0,0 @@
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0)

@ -0,0 +1,60 @@
# parsetab.py
# This file is automatically generated. Do not edit.
# pylint: disable=W,C,R
_tabversion = '3.10'
_lr_method = 'LALR'
_lr_signature = 'ASSIGN BOOLEAN CATEGORY COMMA DIVIDE EQUAL FIELD FUNCTION GREATER GREATEREQUAL IDENTIFIER LESS LESSEQUAL LPAREN MINUS NOTEQUAL NUMBER PLUS RPAREN STRING TIMESexpression : comparison\n | expression EQUAL comparison\n | expression NOTEQUAL comparison\n | expression GREATER comparison\n | expression LESS comparison\n | expression GREATEREQUAL comparison\n | expression LESSEQUAL comparisoncomparison : term\n | comparison PLUS term\n | comparison MINUS termterm : factor\n | term TIMES factor\n | term DIVIDE factorfactor : NUMBER\n | STRING\n | FIELD\n | CATEGORY\n | IDENTIFIER\n | BOOLEAN\n | MINUS factor\n | LPAREN expression RPAREN\n | function_callfunction_call : FUNCTION LPAREN args RPARENargs : arg_list\n | emptyarg_list : arg\n | arg_list COMMA argarg : expression\n | IDENTIFIER ASSIGN expressionempty :'
_lr_action_items = {'NUMBER':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,]),'STRING':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,]),'FIELD':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,]),'CATEGORY':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,]),'IDENTIFIER':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[10,10,10,10,10,10,10,10,10,10,10,10,10,44,44,10,]),'BOOLEAN':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,]),'MINUS':([0,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,44,45,46,47,],[4,22,-8,4,-11,-14,-15,-16,-17,-18,-19,4,-22,4,4,4,4,4,4,4,4,4,4,-20,4,22,22,22,22,22,22,-9,-10,-12,-13,-21,-18,-23,4,4,]),'LPAREN':([0,4,12,14,15,16,17,18,19,20,21,22,23,24,27,46,47,],[12,12,12,27,12,12,12,12,12,12,12,12,12,12,12,12,12,]),'FUNCTION':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,]),'$end':([1,2,3,5,6,7,8,9,10,11,13,25,28,29,30,31,32,33,34,35,36,37,38,45,],[0,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,-23,]),'EQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[15,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,15,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,15,-18,-23,15,]),'NOTEQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[16,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,16,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,16,-18,-23,16,]),'GREATER':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[17,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,17,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,17,-18,-23,17,]),'LESS':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[18,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,18,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,18,-18,-23,18,]),'GREATEREQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[19,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,19,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,19,-18,-23,19,]),'LESSEQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[20,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,20,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,20,-18,-23,20,]),'RPAREN':([2,3,5,6,7,8,9,10,11,13,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,48,49,],[-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,38,-30,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,45,-24,-25,-26,-28,-18,-23,-27,-29,]),'COMMA':([2,3,5,6,7,8,9,10,11,13,25,28,29,30,31,32,33,34,35,36,37,38,40,42,43,44,45,48,49,],[-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,46,-26,-28,-18,-23,-27,-29,]),'PLUS':([2,3,5,6,7,8,9,10,11,13,25,28,29,30,31,32,33,34,35,36,37,38,44,45,],[21,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,21,21,21,21,21,21,-9,-10,-12,-13,-21,-18,-23,]),'TIMES':([3,5,6,7,8,9,10,11,13,25,34,35,36,37,38,44,45,],[23,-11,-14,-15,-16,-17,-18,-19,-22,-20,23,23,-12,-13,-21,-18,-23,]),'DIVIDE':([3,5,6,7,8,9,10,11,13,25,34,35,36,37,38,44,45,],[24,-11,-14,-15,-16,-17,-18,-19,-22,-20,24,24,-12,-13,-21,-18,-23,]),'ASSIGN':([44,],[47,]),}
_lr_action = {}
for _k, _v in _lr_action_items.items():
for _x,_y in zip(_v[0],_v[1]):
if not _x in _lr_action: _lr_action[_x] = {}
_lr_action[_x][_k] = _y
del _lr_action_items
_lr_goto_items = {'expression':([0,12,27,46,47,],[1,26,43,43,49,]),'comparison':([0,12,15,16,17,18,19,20,27,46,47,],[2,2,28,29,30,31,32,33,2,2,2,]),'term':([0,12,15,16,17,18,19,20,21,22,27,46,47,],[3,3,3,3,3,3,3,3,34,35,3,3,3,]),'factor':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[5,25,5,5,5,5,5,5,5,5,5,36,37,5,5,5,]),'function_call':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,]),'args':([27,],[39,]),'arg_list':([27,],[40,]),'empty':([27,],[41,]),'arg':([27,46,],[42,48,]),}
_lr_goto = {}
for _k, _v in _lr_goto_items.items():
for _x, _y in zip(_v[0], _v[1]):
if not _x in _lr_goto: _lr_goto[_x] = {}
_lr_goto[_x][_k] = _y
del _lr_goto_items
_lr_productions = [
("S' -> expression","S'",1,None,None,None),
('expression -> comparison','expression',1,'p_expression','expression_validator.py',355),
('expression -> expression EQUAL comparison','expression',3,'p_expression','expression_validator.py',356),
('expression -> expression NOTEQUAL comparison','expression',3,'p_expression','expression_validator.py',357),
('expression -> expression GREATER comparison','expression',3,'p_expression','expression_validator.py',358),
('expression -> expression LESS comparison','expression',3,'p_expression','expression_validator.py',359),
('expression -> expression GREATEREQUAL comparison','expression',3,'p_expression','expression_validator.py',360),
('expression -> expression LESSEQUAL comparison','expression',3,'p_expression','expression_validator.py',361),
('comparison -> term','comparison',1,'p_comparison','expression_validator.py',368),
('comparison -> comparison PLUS term','comparison',3,'p_comparison','expression_validator.py',369),
('comparison -> comparison MINUS term','comparison',3,'p_comparison','expression_validator.py',370),
('term -> factor','term',1,'p_term','expression_validator.py',377),
('term -> term TIMES factor','term',3,'p_term','expression_validator.py',378),
('term -> term DIVIDE factor','term',3,'p_term','expression_validator.py',379),
('factor -> NUMBER','factor',1,'p_factor','expression_validator.py',386),
('factor -> STRING','factor',1,'p_factor','expression_validator.py',387),
('factor -> FIELD','factor',1,'p_factor','expression_validator.py',388),
('factor -> CATEGORY','factor',1,'p_factor','expression_validator.py',389),
('factor -> IDENTIFIER','factor',1,'p_factor','expression_validator.py',390),
('factor -> BOOLEAN','factor',1,'p_factor','expression_validator.py',391),
('factor -> MINUS factor','factor',2,'p_factor','expression_validator.py',392),
('factor -> LPAREN expression RPAREN','factor',3,'p_factor','expression_validator.py',393),
('factor -> function_call','factor',1,'p_factor','expression_validator.py',394),
('function_call -> FUNCTION LPAREN args RPAREN','function_call',4,'p_function_call','expression_validator.py',422),
('args -> arg_list','args',1,'p_args','expression_validator.py',426),
('args -> empty','args',1,'p_args','expression_validator.py',427),
('arg_list -> arg','arg_list',1,'p_arg_list','expression_validator.py',434),
('arg_list -> arg_list COMMA arg','arg_list',3,'p_arg_list','expression_validator.py',435),
('arg -> expression','arg',1,'p_arg','expression_validator.py',442),
('arg -> IDENTIFIER ASSIGN expression','arg',3,'p_arg','expression_validator.py',443),
('empty -> <empty>','empty',0,'p_empty','expression_validator.py',450),
]
Loading…
Cancel
Save