main
parent
cf56e4e9dc
commit
953772d5e0
@ -0,0 +1,998 @@ |
||||
# !/usr/bin/env python3 |
||||
# -*- coding: utf-8 -*- |
||||
""" |
||||
表达式验证器 - 使用抽象语法树验证字符串表达式格式是否正确 |
||||
|
||||
本模块实现了一个能够检测字符串表达式格式是否正确的系统,基于PLY(Python Lex-Yacc) |
||||
构建词法分析器和语法分析器,识别表达式中的操作符、函数和字段,并验证其格式正确性。 |
||||
""" |
||||
|
||||
import re |
||||
import sys |
||||
import json |
||||
import os |
||||
from typing import List, Dict, Any, Optional, Tuple |
||||
|
||||
# 尝试导入PLY库,如果不存在则提供安装提示 |
||||
try: |
||||
import ply.lex as lex |
||||
import ply.yacc as yacc |
||||
except ImportError: |
||||
print("错误: 需要安装PLY库。请运行 'pip install ply' 来安装。") |
||||
sys.exit(1) |
||||
|
||||
# 1. 定义支持的操作符和函数 |
||||
supported_functions = { |
||||
# Group 类别函数 |
||||
'group_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_mean': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, |
||||
'group_median': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_rank': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_vector_proj': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'category']}, |
||||
'group_normalize': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'category', 'expression', 'expression', 'expression']}, |
||||
'group_extra': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'category']}, |
||||
'group_backfill': {'min_args': 3, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'expression'], 'param_names': ['x', 'cat', 'days', 'std']}, |
||||
'group_scale': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_count': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_zscore': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_std_dev': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_sum': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_neutralize': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'category']}, |
||||
'group_multi_regression': {'min_args': 4, 'max_args': 9, 'arg_types': ['expression'] * 9}, |
||||
'group_cartesian_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['category', 'category']}, |
||||
'combo_a': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, |
||||
|
||||
# Transformational 类别函数 |
||||
'right_tail': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'bucket': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 第二个参数可以是string类型的range参数 |
||||
'tail': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'expression']}, |
||||
'left_tail': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'trade_when': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, |
||||
'generate_stats': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
|
||||
# Cross Sectional 类别函数 |
||||
'winsorize': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression'], 'param_names': ['x', 'std']}, |
||||
'rank': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'regression_proj': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'vector_neut': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'regression_neut': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'multi_regression': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # 支持多个自变量 |
||||
|
||||
# Time Series 类别函数 |
||||
'ts_std_dev': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_mean': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_delay': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_corr': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, |
||||
'ts_zscore': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_returns': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'mode']}, |
||||
'ts_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_backfill': {'min_args': 2, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'string']}, |
||||
'days_from_last_change': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'last_diff_value': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_scale': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, |
||||
'ts_entropy': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number'], 'param_names': ['x', 'd', 'buckets']}, |
||||
'ts_step': {'min_args': 1, 'max_args': 1, 'arg_types': ['number']}, |
||||
'ts_sum': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_co_kurtosis': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, |
||||
'inst_tvr': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_decay_exp_window': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'factor']}, |
||||
'ts_av_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_kurtosis': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_min_max_diff': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, |
||||
'ts_arg_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_max': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_min_max_cps': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, |
||||
'ts_rank': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, |
||||
'ts_ir': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_theilsen': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, |
||||
'hump_decay': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_weighted_decay': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_quantile': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'string']}, |
||||
'ts_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_count_nans': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_covariance': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, |
||||
'ts_co_skewness': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, |
||||
'ts_min_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_decay_linear': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'boolean']}, |
||||
'jump_decay': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'number', 'expression', 'number', 'number'], |
||||
'param_names': ['x', 'd', 'stddev', 'sensitivity', 'force']}, |
||||
'ts_moment': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'k']}, |
||||
'ts_arg_min': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_regression': {'min_args': 3, 'max_args': 5, 'arg_types': ['expression', 'expression', 'number', 'number', 'number'], 'param_names': ['y', 'x', 'd', 'lag', 'rettype']}, |
||||
'ts_skewness': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_max_diff': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'kth_element': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'number', 'number']}, |
||||
'hump': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'hump']}, |
||||
'ts_median': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_delta': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_poly_regression': {'min_args': 3, 'max_args': 4, 'arg_types': ['expression', 'expression', 'number', 'number']}, |
||||
'ts_target_tvr_decay': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'number'], |
||||
'param_names': ['x', 'lambda_min', 'lambda_max', 'target_tvr']}, |
||||
'ts_target_tvr_delta_limit': {'min_args': 2, 'max_args': 5, 'arg_types': ['expression', 'expression', 'number', 'number', 'number']}, |
||||
'ts_target_tvr_hump': {'min_args': 1, 'max_args': 4, 'arg_types': ['expression', 'number', 'number', 'number']}, |
||||
'ts_delta_limit': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number']}, |
||||
|
||||
# Special 类别函数 |
||||
'inst_pnl': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'self_corr': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'in': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字 |
||||
'universe_size': {'min_args': 0, 'max_args': 0, 'arg_types': []}, |
||||
|
||||
# Missing functions from operators.py |
||||
'quantile': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'driver', 'sigma']}, |
||||
# quantile(x, driver = gaussian, sigma = 1.0) |
||||
'normalize': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'boolean', 'number']}, # normalize(x, useStd = false, limit = 0.0) |
||||
'zscore': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # zscore(x) |
||||
|
||||
# Logical 类别函数 |
||||
'or': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字 |
||||
'and': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # 注意:这是关键字 |
||||
'not': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # 注意:这是关键字 |
||||
'is_nan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'is_not_nan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'less': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'greater': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'is_finite': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'if_else': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression']}, |
||||
'not_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'less_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'greater_equal': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
|
||||
# Vector 类别函数 |
||||
'vec_kurtosis': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_min': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_count': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_sum': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_skewness': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_max': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_avg': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_range': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_choose': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'nth']}, |
||||
'vec_powersum': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'constant']}, |
||||
'vec_stddev': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_percentage': {'min_args': 1, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'percentage']}, |
||||
'vec_ir': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'vec_norm': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'ts_percentage': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'd', 'percentage']}, |
||||
'signed_power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
'ts_product': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number']}, |
||||
|
||||
# Additional functions from test cases |
||||
'rank_by_side': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'number', 'number'], 'param_names': ['x', 'rate', 'scale']}, |
||||
'log_diff': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'nan_mask': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, |
||||
'ts_partial_corr': {'min_args': 4, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'number']}, |
||||
'ts_triple_corr': {'min_args': 4, 'max_args': 4, 'arg_types': ['expression', 'expression', 'expression', 'number']}, |
||||
'clamp': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'lower', 'upper']}, |
||||
'keep': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'number'], 'param_names': ['x', 'condition', 'period']}, |
||||
'replace': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'target', 'dest']}, |
||||
'filter': {'min_args': 3, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'h', 't']}, |
||||
'one_side': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'string'], 'param_names': ['x', 'side']}, |
||||
'scale_down': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'number'], 'param_names': ['x', 'constant']}, |
||||
|
||||
# Arithmetic 类别函数 |
||||
'add': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # add(x, y, filter=false) |
||||
'multiply': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 99 + ['boolean'], 'param_names': ['x', 'y', 'filter']}, # multiply(x, y, ..., filter=false) |
||||
'sign': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'subtract': {'min_args': 2, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # subtract(x, y, filter=false) |
||||
'pasteurize': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'log': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'purify': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'arc_tan': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'max': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # max(x, y, ...) |
||||
'to_nan': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'boolean']}, # to_nan(x, value=0, reverse=false) |
||||
'abs': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'sigmoid': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'divide': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # divide(x, y) |
||||
'min': {'min_args': 2, 'max_args': 100, 'arg_types': ['expression'] * 100}, # min(x, y, ...) |
||||
'tanh': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'nan_out': {'min_args': 1, 'max_args': 3, 'arg_types': ['expression', 'expression', 'expression'], 'param_names': ['x', 'lower', 'upper']}, # nan_out(x, lower=0, upper=0) |
||||
'signed_power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # signed_power(x, y) |
||||
'inverse': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'round': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'sqrt': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
's_log_1p': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'reverse': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, # -x |
||||
'power': {'min_args': 2, 'max_args': 2, 'arg_types': ['expression', 'expression']}, # power(x, y) |
||||
'densify': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
'floor': {'min_args': 1, 'max_args': 1, 'arg_types': ['expression']}, |
||||
} |
||||
|
||||
# 2. 定义group类型字段 |
||||
group_fields = { |
||||
'sector', 'subindustry', 'industry', 'exchange', 'country', 'market' |
||||
} |
||||
|
||||
# 3. 有效类别集合 |
||||
valid_categories = group_fields |
||||
|
||||
# 4. 字段命名模式 - 只校验字段是不是数字字母下划线组成 |
||||
field_patterns = [ |
||||
re.compile(r'^[a-zA-Z0-9_]+$'), # 只允许数字、字母和下划线组成的字段名 |
||||
] |
||||
|
||||
|
||||
# 4. 抽象语法树节点类型 |
||||
class ASTNode: |
||||
"""抽象语法树节点基类""" |
||||
|
||||
def __init__(self, node_type: str, children: Optional[List['ASTNode']] = None, |
||||
value: Optional[Any] = None, line: Optional[int] = None): |
||||
self.node_type = node_type # 'function', 'operator', 'field', 'number', 'expression' |
||||
self.children = children or [] |
||||
self.value = value |
||||
self.line = line |
||||
|
||||
def __str__(self) -> str: |
||||
return f"ASTNode({self.node_type}, {self.value}, line={self.line})" |
||||
|
||||
def __repr__(self) -> str: |
||||
return self.__str__() |
||||
|
||||
|
||||
class ExpressionValidator: |
||||
"""表达式验证器类""" |
||||
|
||||
def __init__(self): |
||||
"""初始化词法分析器和语法分析器""" |
||||
# 构建词法分析器 |
||||
self.lexer = lex.lex(module=self, debug=False) |
||||
# 构建语法分析器 |
||||
self.parser = yacc.yacc(module=self, debug=False) |
||||
# 错误信息存储 |
||||
self.errors = [] |
||||
|
||||
# 词法分析器规则 |
||||
tokens = ('FUNCTION', 'FIELD', 'NUMBER', 'LPAREN', 'RPAREN', |
||||
'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'COMMA', 'CATEGORY', |
||||
'EQUAL', 'ASSIGN', 'IDENTIFIER', 'STRING', 'GREATER', 'LESS', 'GREATEREQUAL', 'LESSEQUAL', 'NOTEQUAL', 'BOOLEAN') |
||||
|
||||
# 忽略空白字符 |
||||
t_ignore = ' \t\n' |
||||
|
||||
# 操作符 - 注意顺序很重要,长的操作符要放在前面 |
||||
t_PLUS = r'\+' |
||||
t_MINUS = r'-' |
||||
t_TIMES = r'\*' |
||||
t_DIVIDE = r'/' |
||||
t_LPAREN = r'\(' |
||||
t_RPAREN = r'\)' |
||||
t_COMMA = r',' |
||||
t_EQUAL = r'==' |
||||
t_NOTEQUAL = r'!=' |
||||
t_GREATEREQUAL = r'>=' |
||||
t_LESSEQUAL = r'<=' |
||||
t_GREATER = r'>' |
||||
t_LESS = r'<' |
||||
t_ASSIGN = r'=' |
||||
|
||||
# 数字(整数和浮点数) |
||||
def t_NUMBER(self, t): |
||||
r'\d+\.?\d*' |
||||
if '.' in t.value: |
||||
t.value = float(t.value) |
||||
else: |
||||
t.value = int(t.value) |
||||
return t |
||||
|
||||
# 字符串 - 需要放在所有其他标识符规则之前 |
||||
def t_STRING(self, t): |
||||
r"'[^']*'|\"[^\"]*\"" |
||||
# 去除引号 |
||||
t.value = t.value[1:-1] |
||||
return t |
||||
|
||||
# 函数和字段名 |
||||
def t_IDENTIFIER(self, t): |
||||
r'[a-zA-Z_][a-zA-Z0-9_]*' |
||||
# 检查是否为布尔值 |
||||
if t.value.lower() in {'true', 'false'}: |
||||
t.type = 'BOOLEAN' |
||||
t.value = t.value.lower() # 转换为小写以保持一致性 |
||||
else: |
||||
# 查看当前token后面的字符,判断是否为参数名(后面跟着'=') |
||||
lexpos = t.lexpos |
||||
next_chars = '' |
||||
if lexpos + len(t.value) < len(t.lexer.lexdata): |
||||
# 查看当前token后面的字符,跳过空格 |
||||
next_pos = lexpos + len(t.value) |
||||
while next_pos < len(t.lexer.lexdata) and t.lexer.lexdata[next_pos].isspace(): |
||||
next_pos += 1 |
||||
if next_pos < len(t.lexer.lexdata): |
||||
next_chars = t.lexer.lexdata[next_pos:next_pos + 1] |
||||
|
||||
# 如果后面跟着'=',则为参数名 |
||||
if next_chars == '=': |
||||
t.type = 'IDENTIFIER' |
||||
# 如果后面跟着'(',则为函数名 |
||||
elif next_chars == '(': |
||||
t.type = 'FUNCTION' |
||||
t.value = t.value.lower() # 转换为小写以保持一致性 |
||||
# 检查是否为参数名(支持更多参数名) |
||||
elif t.value in {'std', 'k', 'lambda_min', 'lambda_max', 'target_tvr', 'range', 'buckets', 'lag', 'rettype', 'mode', 'nth', 'constant', 'percentage', 'driver', 'sigma', |
||||
'rate', 'scale', 'filter', 'lower', 'upper', 'target', 'dest', 'event', 'sensitivity', 'force', 'h', 't', 'period', 'stddev', 'factor', 'k', 'useStd', |
||||
'limit', 'gaussian', 'uniform', 'cauchy'}: |
||||
t.type = 'IDENTIFIER' |
||||
# 检查是否为函数名(不区分大小写) |
||||
elif t.value.lower() in supported_functions: |
||||
t.type = 'FUNCTION' |
||||
t.value = t.value.lower() # 转换为小写以保持一致性 |
||||
# 检查是否为有效类别 |
||||
elif t.value in valid_categories: |
||||
t.type = 'CATEGORY' |
||||
# 检查是否为字段名 |
||||
elif self._is_valid_field(t.value): |
||||
t.type = 'FIELD' |
||||
else: |
||||
# 其他标识符,保留为IDENTIFIER类型 |
||||
t.type = 'IDENTIFIER' |
||||
return t |
||||
|
||||
# 行号跟踪 |
||||
def t_newline(self, t): |
||||
r'\n+' |
||||
t.lexer.lineno += len(t.value) |
||||
|
||||
# 错误处理 |
||||
def t_error(self, t): |
||||
if t: |
||||
# 检查是否为非法字符 |
||||
if not re.match(r'[a-zA-Z0-9_\+\-\*/\(\)\,\s=<>!]', t.value[0]): |
||||
# 这是一个非法字符 |
||||
self.errors.append(f"非法字符 '{t.value[0]}' (行 {t.lexer.lineno})") |
||||
else: |
||||
# 这是一个非法标记 |
||||
self.errors.append(f"非法标记 '{t.value}' (行 {t.lexer.lineno})") |
||||
# 跳过这个字符,继续处理 |
||||
t.lexer.skip(1) |
||||
else: |
||||
self.errors.append("词法分析器到达文件末尾") |
||||
|
||||
# 语法分析器规则 |
||||
def p_expression(self, p): |
||||
"""expression : comparison |
||||
| expression EQUAL comparison |
||||
| expression NOTEQUAL comparison |
||||
| expression GREATER comparison |
||||
| expression LESS comparison |
||||
| expression GREATEREQUAL comparison |
||||
| expression LESSEQUAL comparison""" |
||||
if len(p) == 2: |
||||
p[0] = p[1] |
||||
else: |
||||
p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]}) |
||||
|
||||
def p_comparison(self, p): |
||||
"""comparison : term |
||||
| comparison PLUS term |
||||
| comparison MINUS term""" |
||||
if len(p) == 2: |
||||
p[0] = p[1] |
||||
else: |
||||
p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]}) |
||||
|
||||
def p_term(self, p): |
||||
"""term : factor |
||||
| term TIMES factor |
||||
| term DIVIDE factor""" |
||||
if len(p) == 2: |
||||
p[0] = p[1] |
||||
else: |
||||
p[0] = ASTNode('binop', [p[1], p[3]], {'op': p[2]}) |
||||
|
||||
def p_factor(self, p): |
||||
"""factor : NUMBER |
||||
| STRING |
||||
| FIELD |
||||
| CATEGORY |
||||
| IDENTIFIER |
||||
| BOOLEAN |
||||
| MINUS factor |
||||
| LPAREN expression RPAREN |
||||
| function_call""" |
||||
if len(p) == 2: |
||||
# 数字、字符串、字段、类别或标识符 |
||||
if p.slice[1].type == 'NUMBER': |
||||
p[0] = ASTNode('number', value=p[1]) |
||||
elif p.slice[1].type == 'STRING': |
||||
p[0] = ASTNode('string', value=p[1]) |
||||
elif p.slice[1].type == 'FIELD': |
||||
p[0] = ASTNode('field', value=p[1]) |
||||
elif p.slice[1].type == 'CATEGORY': |
||||
p[0] = ASTNode('category', value=p[1]) |
||||
elif p.slice[1].type == 'BOOLEAN': |
||||
p[0] = ASTNode('boolean', value=p[1]) |
||||
elif p.slice[1].type == 'IDENTIFIER': |
||||
p[0] = ASTNode('identifier', value=p[1]) |
||||
else: |
||||
p[0] = p[1] |
||||
elif len(p) == 3: |
||||
# 一元负号 |
||||
p[0] = ASTNode('unop', [p[2]], {'op': p[1]}) |
||||
elif len(p) == 4: |
||||
# 括号表达式 |
||||
p[0] = p[2] |
||||
else: |
||||
# 函数调用 |
||||
p[0] = p[1] |
||||
|
||||
def p_function_call(self, p): |
||||
'''function_call : FUNCTION LPAREN args RPAREN''' |
||||
p[0] = ASTNode('function', p[3], p[1]) |
||||
|
||||
def p_args(self, p): |
||||
'''args : arg_list |
||||
| empty''' |
||||
if len(p) == 2 and p[1] is not None: |
||||
p[0] = p[1] |
||||
else: |
||||
p[0] = [] |
||||
|
||||
def p_arg_list(self, p): |
||||
'''arg_list : arg |
||||
| arg_list COMMA arg''' |
||||
if len(p) == 2: |
||||
p[0] = [p[1]] |
||||
else: |
||||
p[0] = p[1] + [p[3]] |
||||
|
||||
def p_arg(self, p): |
||||
'''arg : expression |
||||
| IDENTIFIER ASSIGN expression''' |
||||
if len(p) == 2: |
||||
p[0] = {'type': 'positional', 'value': p[1]} |
||||
else: |
||||
p[0] = {'type': 'named', 'name': p[1], 'value': p[3]} |
||||
|
||||
def p_empty(self, p): |
||||
'''empty :''' |
||||
p[0] = None |
||||
|
||||
# 语法错误处理 |
||||
def p_error(self, p): |
||||
if p: |
||||
self.errors.append(f"语法错误在位置 {p.lexpos}: 非法标记 '{p.value}'") |
||||
else: |
||||
self.errors.append("语法错误: 表达式不完整") |
||||
|
||||
def _is_valid_field(self, field_name: str) -> bool: |
||||
"""检查字段名是否符合模式""" |
||||
for pattern in field_patterns: |
||||
if pattern.match(field_name): |
||||
return True |
||||
return False |
||||
|
||||
def validate_function(self, node: ASTNode, is_in_group_arg: bool = False) -> List[str]: |
||||
"""验证函数调用的参数数量和类型""" |
||||
function_name = node.value |
||||
args = node.children |
||||
function_info = supported_functions.get(function_name) |
||||
|
||||
if not function_info: |
||||
return [f"未知函数: {function_name}"] |
||||
|
||||
errors = [] |
||||
|
||||
# 检查参数数量 |
||||
if len(args) < function_info['min_args']: |
||||
errors.append(f"函数 {function_name} 需要至少 {function_info['min_args']} 个参数,但只提供了 {len(args)}") |
||||
elif len(args) > function_info['max_args']: |
||||
errors.append(f"函数 {function_name} 最多接受 {function_info['max_args']} 个参数,但提供了 {len(args)}") |
||||
|
||||
# 处理参数验证 |
||||
# 跟踪已使用的位置参数索引 |
||||
positional_index = 0 |
||||
|
||||
# 对于所有函数,支持命名参数 |
||||
for arg in args: |
||||
if isinstance(arg, dict): |
||||
if arg['type'] == 'named': |
||||
# 命名参数 |
||||
if 'param_names' in function_info and arg['name'] in function_info['param_names']: |
||||
# 查找参数在param_names中的索引 |
||||
param_index = function_info['param_names'].index(arg['name']) |
||||
if param_index < len(function_info['arg_types']): |
||||
expected_type = function_info['arg_types'][param_index] |
||||
arg_errors = self._validate_arg_type(arg['value'], expected_type, param_index, function_name, is_in_group_arg) |
||||
errors.extend(arg_errors) |
||||
# 对于winsorize函数,支持std和clip参数 |
||||
elif function_name == 'winsorize' and arg['name'] in ['std', 'clip']: |
||||
arg_errors = self._validate_arg_type(arg['value'], 'number', 0, function_name, is_in_group_arg) |
||||
errors.extend(arg_errors) |
||||
# 对于bucket函数,支持'range'和'buckets'参数 |
||||
elif function_name == 'bucket' and arg['name'] in ['range', 'buckets']: |
||||
# range和buckets参数应该是string类型 |
||||
arg_errors = self._validate_arg_type(arg['value'], 'string', 1, function_name, is_in_group_arg) |
||||
errors.extend(arg_errors) |
||||
else: |
||||
errors.append(f"函数 {function_name} 不存在参数 '{arg['name']}'") |
||||
elif arg['type'] == 'positional': |
||||
# 位置参数(字典形式) |
||||
# 对于winsorize函数,第二个参数必须是命名参数 |
||||
if function_name == 'winsorize' and positional_index == 1: |
||||
errors.append(f"函数 {function_name} 的第二个参数必须使用命名参数 'std='") |
||||
# 对于ts_moment函数,第三个参数必须是命名参数 |
||||
elif function_name == 'ts_moment' and positional_index == 2: |
||||
errors.append(f"函数 {function_name} 的第三个参数必须使用命名参数 'k='") |
||||
else: |
||||
# 验证位置参数的类型 |
||||
if positional_index < len(function_info['arg_types']): |
||||
expected_type = function_info['arg_types'][positional_index] |
||||
arg_errors = self._validate_arg_type(arg['value'], expected_type, positional_index, function_name, is_in_group_arg) |
||||
errors.extend(arg_errors) |
||||
positional_index += 1 |
||||
else: |
||||
# 其他字典类型参数 |
||||
errors.append(f"参数 {positional_index + 1} 格式错误") |
||||
positional_index += 1 |
||||
else: |
||||
# 位置参数(直接ASTNode形式) |
||||
# 对于winsorize函数,第二个参数必须是命名参数 |
||||
if function_name == 'winsorize' and positional_index == 1: |
||||
errors.append(f"函数 {function_name} 的第二个参数必须使用命名参数 'std='") |
||||
# 对于ts_moment函数,第三个参数必须是命名参数 |
||||
elif function_name == 'ts_moment' and positional_index == 2: |
||||
errors.append(f"函数 {function_name} 的第三个参数必须使用命名参数 'k='") |
||||
else: |
||||
# 验证位置参数的类型 |
||||
if positional_index < len(function_info['arg_types']): |
||||
expected_type = function_info['arg_types'][positional_index] |
||||
arg_errors = self._validate_arg_type(arg, expected_type, positional_index, function_name, is_in_group_arg) |
||||
errors.extend(arg_errors) |
||||
positional_index += 1 |
||||
|
||||
return errors |
||||
|
||||
def _validate_arg_type(self, arg: ASTNode, expected_type: str, arg_index: int, function_name: str, is_in_group_arg: bool = False) -> List[str]: |
||||
"""验证参数类型是否符合预期""" |
||||
errors = [] |
||||
|
||||
# 首先检查是否是group类型字段,如果是则只能用于Group类型函数 |
||||
# 但是如果当前函数是group_xxx或在group函数的参数链中,则允许使用 |
||||
if arg.node_type == 'category' and arg.value in group_fields: |
||||
if not (function_name.startswith('group_') or is_in_group_arg): |
||||
errors.append(f"Group类型字段 '{arg.value}' 只能用于Group类型函数的参数中") |
||||
|
||||
# 然后验证参数类型是否符合预期 |
||||
if expected_type == 'expression': |
||||
# 表达式可以是任何有效的AST节点 |
||||
pass |
||||
elif expected_type == 'number': |
||||
if arg.node_type != 'number': |
||||
errors.append(f"参数 {arg_index + 1} 应该是一个数字,但得到 {arg.node_type}") |
||||
elif expected_type == 'boolean': |
||||
# 布尔值可以是数字(0/1) |
||||
if arg.node_type != 'number': |
||||
errors.append(f"参数 {arg_index + 1} 应该是一个布尔值(0/1),但得到 {arg.node_type}") |
||||
elif expected_type == 'field': |
||||
if arg.node_type != 'field' and arg.node_type != 'category': |
||||
# 允许field或category作为字段参数 |
||||
errors.append(f"参数 {arg_index + 1} 应该是一个字段,但得到 {arg.node_type}") |
||||
elif arg.node_type == 'field' and not self._is_valid_field(arg.value): |
||||
errors.append(f"无效的字段名: {arg.value}") |
||||
elif expected_type == 'category': |
||||
if not function_name.startswith('group_'): |
||||
# 非group函数的category参数必须是category类型且在valid_categories中 |
||||
if arg.node_type != 'category': |
||||
errors.append(f"参数 {arg_index + 1} 应该是一个类别,但得到 {arg.node_type}") |
||||
elif arg.value not in valid_categories: |
||||
errors.append(f"无效的类别: {arg.value}") |
||||
# group函数的category参数可以是任何类型(field、category等),不进行类型校验 |
||||
|
||||
return errors |
||||
|
||||
def validate_ast(self, ast: Optional[ASTNode], is_in_group_arg: bool = False) -> List[str]: |
||||
"""递归验证抽象语法树""" |
||||
if not ast: |
||||
return ["无法解析表达式"] |
||||
|
||||
errors = [] |
||||
|
||||
# 根据节点类型进行验证 |
||||
if ast.node_type == 'function': |
||||
# 检查当前函数是否是group函数 |
||||
is_group_function = ast.value.startswith('group_') |
||||
# 确定当前是否在group函数的参数链中 |
||||
current_in_group_arg = is_in_group_arg or is_group_function |
||||
# 验证函数 |
||||
function_errors = self.validate_function(ast, current_in_group_arg) |
||||
errors.extend(function_errors) |
||||
|
||||
# 递归验证子节点时使用current_in_group_arg |
||||
for child in ast.children: |
||||
if isinstance(child, dict): |
||||
# 命名参数,验证其值 |
||||
if 'value' in child and hasattr(child['value'], 'node_type'): |
||||
child_errors = self.validate_ast(child['value'], current_in_group_arg) |
||||
errors.extend(child_errors) |
||||
elif hasattr(child, 'node_type'): |
||||
child_errors = self.validate_ast(child, current_in_group_arg) |
||||
errors.extend(child_errors) |
||||
elif ast.node_type in ['unop', 'binop']: |
||||
# 对操作符的子节点进行验证 |
||||
for child in ast.children: |
||||
if hasattr(child, 'node_type'): |
||||
child_errors = self.validate_ast(child, is_in_group_arg) |
||||
errors.extend(child_errors) |
||||
elif ast.node_type == 'field': |
||||
# 验证字段名 |
||||
if not self._is_valid_field(ast.value): |
||||
errors.append(f"无效的字段名: {ast.value}") |
||||
else: |
||||
# 递归验证子节点 |
||||
for child in ast.children: |
||||
if isinstance(child, dict): |
||||
# 命名参数,验证其值 |
||||
if 'value' in child and hasattr(child['value'], 'node_type'): |
||||
child_errors = self.validate_ast(child['value'], is_in_group_arg) |
||||
errors.extend(child_errors) |
||||
elif hasattr(child, 'node_type'): |
||||
child_errors = self.validate_ast(child, is_in_group_arg) |
||||
errors.extend(child_errors) |
||||
|
||||
return errors |
||||
|
||||
def _process_semicolon_expression(self, expression: str) -> Tuple[bool, str]: |
||||
"""处理带有分号的表达式,将其转换为不带分号的简化形式 |
||||
|
||||
Args: |
||||
expression: 要处理的表达式字符串 |
||||
|
||||
Returns: |
||||
Tuple[bool, str]: (是否成功, 转换后的表达式或错误信息) |
||||
""" |
||||
# 检查表达式是否以分号结尾 |
||||
if expression.strip().endswith(';'): |
||||
return False, "表达式不能以分号结尾" |
||||
|
||||
# 分割表达式为语句列表 |
||||
statements = [stmt.strip() for stmt in expression.split(';') if stmt.strip()] |
||||
if not statements: |
||||
return False, "表达式不能为空" |
||||
|
||||
# 存储变量赋值 |
||||
variables = {} |
||||
|
||||
# 处理每个赋值语句(除了最后一个) |
||||
for i, stmt in enumerate(statements[:-1]): |
||||
# 检查是否包含赋值符号 |
||||
if '=' not in stmt: |
||||
return False, f"第{i + 1}个语句必须是赋值语句(使用=符号)" |
||||
|
||||
# 检查是否是比较操作符(==, !=, <=, >=) |
||||
if any(op in stmt for op in ['==', '!=', '<=', '>=']): |
||||
# 如果包含比较操作符,需要确认是否有赋值符号 |
||||
# 使用临时替换法:将比较操作符替换为临时标记,再检查是否还有= |
||||
temp_stmt = stmt |
||||
for op in ['==', '!=', '<=', '>=']: |
||||
temp_stmt = temp_stmt.replace(op, '---') |
||||
|
||||
if '=' not in temp_stmt: |
||||
return False, f"第{i + 1}个语句必须是赋值语句,不能只是比较表达式" |
||||
|
||||
# 找到第一个=符号(不是比较操作符的一部分) |
||||
# 先将比较操作符替换为临时标记,再找= |
||||
temp_stmt = stmt |
||||
for op in ['==', '!=', '<=', '>=']: |
||||
temp_stmt = temp_stmt.replace(op, '---') |
||||
|
||||
if '=' not in temp_stmt: |
||||
return False, f"第{i + 1}个语句必须是赋值语句(使用=符号)" |
||||
|
||||
# 找到实际的=位置 |
||||
equals_pos = temp_stmt.index('=') |
||||
|
||||
# 在原始语句中找到对应位置 |
||||
real_equals_pos = 0 |
||||
temp_count = 0 |
||||
for char in stmt: |
||||
if temp_count == equals_pos: |
||||
break |
||||
if char in '!<>': |
||||
# 检查是否是比较操作符的一部分 |
||||
if real_equals_pos + 1 < len(stmt) and stmt[real_equals_pos + 1] == '=': |
||||
# 是比较操作符,跳过两个字符 |
||||
real_equals_pos += 2 |
||||
temp_count += 3 # 因为替换成了三个字符的--- |
||||
else: |
||||
real_equals_pos += 1 |
||||
temp_count += 1 |
||||
else: |
||||
real_equals_pos += 1 |
||||
temp_count += 1 |
||||
|
||||
# 分割变量名和值 |
||||
var_name = stmt[:real_equals_pos].strip() |
||||
var_value = stmt[real_equals_pos + 1:].strip() |
||||
|
||||
# 检查变量名是否有效 |
||||
if not re.match(r'^[a-zA-Z_][a-zA-Z0-9_]*$', var_name): |
||||
return False, f"第{i + 1}个语句的变量名'{var_name}'无效,只能包含字母、数字和下划线,且不能以数字开头" |
||||
|
||||
var_name_lower = var_name.lower() # 变量名不区分大小写 |
||||
|
||||
# 检查变量名是否在后续表达式中使用 |
||||
# 这里不需要,因为后面的表达式会检查 |
||||
|
||||
# 检查变量值中使用的变量是否已经定义 |
||||
# 简单检查:提取所有可能的变量名 |
||||
used_vars = re.findall(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', var_value) |
||||
for used_var in used_vars: |
||||
used_var_lower = used_var.lower() |
||||
if used_var_lower not in variables: |
||||
# 检查是否是函数名 |
||||
if used_var not in supported_functions: |
||||
# 对于单个字母或简单单词,不自动视为字段名,要求先定义 |
||||
if len(used_var) <= 2: |
||||
return False, f"第{i + 1}个语句中使用的变量'{used_var}'未在之前定义" |
||||
# 对于较长的字段名,仍然允许作为字段名 |
||||
elif not self._is_valid_field(used_var): |
||||
return False, f"第{i + 1}个语句中使用的变量'{used_var}'未在之前定义" |
||||
|
||||
# 将之前定义的变量替换到当前值中 |
||||
for existing_var, existing_val in variables.items(): |
||||
# 使用单词边界匹配,避免替换到其他单词的一部分 |
||||
var_value = re.sub(rf'\b{existing_var}\b', existing_val, var_value) |
||||
|
||||
# 存储变量 |
||||
variables[var_name_lower] = var_value |
||||
|
||||
# 处理最后一个语句(实际的表达式) |
||||
final_stmt = statements[-1] |
||||
|
||||
# 检查最后一个语句是否是赋值语句 |
||||
if '=' in final_stmt: |
||||
# 替换比较操作符为临时标记,然后检查是否还有单独的= |
||||
temp_stmt = final_stmt |
||||
for op in ['==', '!=', '<=', '>=']: |
||||
temp_stmt = temp_stmt.replace(op, '---') |
||||
|
||||
if '=' in temp_stmt: |
||||
return False, "最后一个语句不能是赋值语句" |
||||
|
||||
# 检查最后一个语句中使用的变量是否已经定义 |
||||
used_vars = re.findall(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', final_stmt) |
||||
for used_var in used_vars: |
||||
used_var_lower = used_var.lower() |
||||
if used_var_lower not in variables: |
||||
# 检查是否是函数名 |
||||
if used_var not in supported_functions: |
||||
# 在分号表达式中,所有非函数名的标识符都必须是变量,必须在之前定义 |
||||
return False, f"最后一个语句中使用的变量'{used_var}'未在之前定义" |
||||
|
||||
# 将变量替换到最后一个表达式中 |
||||
final_expr = final_stmt |
||||
for var_name, var_value in variables.items(): |
||||
final_expr = re.sub(rf'\b{var_name}\b', var_value, final_expr) |
||||
|
||||
return True, final_expr |
||||
|
||||
def check_expression(self, expression: str) -> Dict[str, Any]: |
||||
""" |
||||
检查表达式格式是否正确 |
||||
|
||||
Args: |
||||
expression: 要验证的表达式字符串 |
||||
|
||||
Returns: |
||||
包含验证结果的字典 |
||||
""" |
||||
# 重置错误列表 |
||||
self.errors = [] |
||||
|
||||
try: |
||||
expression = expression.strip() |
||||
if not expression: |
||||
return { |
||||
'valid': False, |
||||
'errors': ['表达式不能为空'], |
||||
'tokens': [], |
||||
'ast': None |
||||
} |
||||
|
||||
# 处理带有分号的表达式 |
||||
if ';' in expression: |
||||
success, result = self._process_semicolon_expression(expression) |
||||
if not success: |
||||
return { |
||||
'valid': False, |
||||
'errors': [result], |
||||
'tokens': [], |
||||
'ast': None |
||||
} |
||||
expression = result |
||||
|
||||
# 重置词法分析器的行号 |
||||
self.lexer.lineno = 1 |
||||
|
||||
# 词法分析(用于调试) |
||||
self.lexer.input(expression) |
||||
tokens = [] |
||||
# 调试:打印识别的标记 |
||||
print(f"\n调试 - 表达式: {expression}") |
||||
print("识别的标记:") |
||||
for token in self.lexer: |
||||
print(f" - 类型: {token.type}, 值: '{token.value}', 位置: {token.lexpos}") |
||||
tokens.append(token) |
||||
|
||||
# 重新设置词法分析器的输入,以便语法分析器使用 |
||||
self.lexer.input(expression) |
||||
self.lexer.lineno = 1 |
||||
|
||||
# 语法分析 |
||||
ast = self.parser.parse(expression, lexer=self.lexer) |
||||
|
||||
# 验证AST |
||||
validation_errors = self.validate_ast(ast) |
||||
|
||||
# 合并所有错误 |
||||
all_errors = self.errors + validation_errors |
||||
|
||||
# 检查括号是否匹配 |
||||
bracket_count = 0 |
||||
for char in expression: |
||||
if char == '(': |
||||
bracket_count += 1 |
||||
elif char == ')': |
||||
bracket_count -= 1 |
||||
if bracket_count < 0: |
||||
all_errors.append("括号不匹配: 右括号过多") |
||||
break |
||||
if bracket_count > 0: |
||||
all_errors.append("括号不匹配: 左括号过多") |
||||
|
||||
return { |
||||
'valid': len(all_errors) == 0, |
||||
'errors': all_errors, |
||||
'tokens': tokens, |
||||
'ast': ast |
||||
} |
||||
except Exception as e: |
||||
return { |
||||
'valid': False, |
||||
'errors': [f"解析错误: {str(e)}"], |
||||
'tokens': [], |
||||
'ast': None |
||||
} |
||||
|
||||
|
||||
def main(): |
||||
"""主函数 - 用于验证表达式并输出结果""" |
||||
validator = ExpressionValidator() |
||||
|
||||
# 获取当前日期 |
||||
import datetime |
||||
today = datetime.datetime.now() |
||||
year = str(today.year) |
||||
month = str(today.month).zfill(2) # 补齐两位 |
||||
day = str(today.day).zfill(2) # 补齐两位 |
||||
|
||||
# 构建TXT文件路径 |
||||
base_dir = os.path.dirname(os.path.abspath(__file__)) # 获取当前py文件所在目录 |
||||
generated_alpha_dir = os.path.join(base_dir, "generated_alpha", year, month, day) |
||||
|
||||
# 检查文件夹是否存在 |
||||
if not os.path.exists(generated_alpha_dir): |
||||
print(f"错误: 今天的alpha文件夹不存在: {generated_alpha_dir}") |
||||
print("请确保AI已经生成了今天的alpha表达式") |
||||
return |
||||
|
||||
# 查找所有的TXT文件 |
||||
txt_files = [f for f in os.listdir(generated_alpha_dir) if f.endswith('.txt')] |
||||
|
||||
if not txt_files: |
||||
print(f"错误: 在 {generated_alpha_dir} 目录下没有找到TXT文件") |
||||
return |
||||
|
||||
print(f"找到 {len(txt_files)} 个TXT文件:") |
||||
for txt_file in txt_files: |
||||
print(f" - {txt_file}") |
||||
|
||||
# 收集所有表达式 |
||||
all_expressions = [] |
||||
|
||||
# 读取所有TXT文件 |
||||
for txt_file in txt_files: |
||||
file_path = os.path.join(generated_alpha_dir, txt_file) |
||||
try: |
||||
with open(file_path, 'r', encoding='utf-8') as f: |
||||
# 读取所有行,去除空行和两端的空白字符 |
||||
expressions = [line.strip() for line in f.readlines() if line.strip()] |
||||
all_expressions.extend(expressions) |
||||
print(f"已从 {txt_file} 读取 {len(expressions)} 个表达式") |
||||
except Exception as e: |
||||
print(f"警告: 读取文件 {txt_file} 失败 - {e}") |
||||
continue |
||||
|
||||
if not all_expressions: |
||||
print("错误: 所有TXT文件都是空的或只包含空行") |
||||
return |
||||
|
||||
print(f"\n总共需要验证 {len(all_expressions)} 个表达式...") |
||||
|
||||
# 验证表达式 |
||||
valid_expressions = [] |
||||
invalid_expressions = [] |
||||
|
||||
for i, expr in enumerate(all_expressions, 1): |
||||
if i % 10 == 0: |
||||
print(f"已验证 {i}/{len(all_expressions)} 个表达式") |
||||
|
||||
result = validator.check_expression(expr) |
||||
if result["valid"]: |
||||
valid_expressions.append(expr) |
||||
else: |
||||
invalid_expressions.append({ |
||||
"expression": expr, |
||||
"errors": result["errors"] |
||||
}) |
||||
# 打印错误信息(可选) |
||||
print(f"表达式 {i} 验证失败: {expr}") |
||||
if result["errors"]: |
||||
for error in result["errors"]: |
||||
print(f" - {error}") |
||||
|
||||
# 保存有效表达式到 .手动处理每天alpha.txt |
||||
if valid_expressions: |
||||
output_path = os.path.join(base_dir, "手动处理每天alpha.txt") |
||||
try: |
||||
with open(output_path, 'w', encoding='utf-8') as f: |
||||
# 每个表达式一行 |
||||
for expr in valid_expressions: |
||||
f.write(expr + "\n") |
||||
print(f"有效表达式已保存到: {output_path}") |
||||
|
||||
# 如果需要,也可以保留源文件名信息 |
||||
# source_info_path = os.path.join(base_dir, "手动处理每天alpha_source_info.txt") |
||||
# with open(source_info_path, 'w', encoding='utf-8') as f: |
||||
# f.write(f"生成日期: {year}-{month}-{day}\n") |
||||
# f.write(f"源文件数量: {len(txt_files)}\n") |
||||
# f.write(f"源文件列表: {', '.join(txt_files)}\n") |
||||
# f.write(f"总表达式数: {len(all_expressions)}\n") |
||||
# f.write(f"有效表达式数: {len(valid_expressions)}\n") |
||||
# f.write(f"无效表达式数: {len(invalid_expressions)}\n") |
||||
except Exception as e: |
||||
print(f"错误: 保存有效表达式失败 - {e}") |
||||
else: |
||||
print("没有有效表达式可保存") |
||||
|
||||
# 输出无效表达式详细信息 |
||||
if invalid_expressions: |
||||
print("\n==========================") |
||||
print("无效表达式详细信息:") |
||||
print("==========================") |
||||
|
||||
# 按错误类型统计 |
||||
error_stats = {} |
||||
for item in invalid_expressions: |
||||
for error in item["errors"]: |
||||
# 提取主要错误类型 |
||||
error_type = error.split(":")[0] if ":" in error else error |
||||
error_stats[error_type] = error_stats.get(error_type, 0) + 1 |
||||
|
||||
print("\n错误类型统计:") |
||||
for error_type, count in error_stats.items(): |
||||
print(f" {error_type}: {count} 个") |
||||
|
||||
print("\n无效表达式列表(前20个):") |
||||
for i, item in enumerate(invalid_expressions[:20], 1): |
||||
print(f"{i}. {item['expression']}") |
||||
for error in item["errors"]: |
||||
print(f" - {error}") |
||||
|
||||
if len(invalid_expressions) > 20: |
||||
print(f"... 还有 {len(invalid_expressions) - 20} 个无效表达式未显示") |
||||
else: |
||||
print("\n恭喜!所有表达式都验证通过!") |
||||
|
||||
# 输出验证结果 |
||||
print(f"\n验证完成!") |
||||
print(f"总共验证: {len(all_expressions)} 个表达式") |
||||
print(f"有效表达式: {len(valid_expressions)}") |
||||
print(f"无效表达式: {len(invalid_expressions)}") |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
main() |
||||
@ -1,77 +0,0 @@ |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
|
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 180), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 240), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 300), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 120)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 60)), 120) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 30)), 60) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 15)), 30) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 7)), 15) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 3)), 7) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 3) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 360), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 150)), 210) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 75)), 150) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 37)), 75) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 18)), 37) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 9)), 18) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 4)), 9) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 4) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
ts_rank(ts_delay(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 420), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 180)), 240) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 90)), 180) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 45)), 90) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 22)), 45) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 11)), 22) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 5)), 11) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 2)), 5) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 1)), 2) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 1) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) * ts_rank(ts_zscore(ts_mean(mdl77_400_rdsale, 0)), 0) |
||||
@ -0,0 +1,60 @@ |
||||
|
||||
# parsetab.py |
||||
# This file is automatically generated. Do not edit. |
||||
# pylint: disable=W,C,R |
||||
_tabversion = '3.10' |
||||
|
||||
_lr_method = 'LALR' |
||||
|
||||
_lr_signature = 'ASSIGN BOOLEAN CATEGORY COMMA DIVIDE EQUAL FIELD FUNCTION GREATER GREATEREQUAL IDENTIFIER LESS LESSEQUAL LPAREN MINUS NOTEQUAL NUMBER PLUS RPAREN STRING TIMESexpression : comparison\n | expression EQUAL comparison\n | expression NOTEQUAL comparison\n | expression GREATER comparison\n | expression LESS comparison\n | expression GREATEREQUAL comparison\n | expression LESSEQUAL comparisoncomparison : term\n | comparison PLUS term\n | comparison MINUS termterm : factor\n | term TIMES factor\n | term DIVIDE factorfactor : NUMBER\n | STRING\n | FIELD\n | CATEGORY\n | IDENTIFIER\n | BOOLEAN\n | MINUS factor\n | LPAREN expression RPAREN\n | function_callfunction_call : FUNCTION LPAREN args RPARENargs : arg_list\n | emptyarg_list : arg\n | arg_list COMMA argarg : expression\n | IDENTIFIER ASSIGN expressionempty :' |
||||
|
||||
_lr_action_items = {'NUMBER':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,]),'STRING':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,]),'FIELD':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,]),'CATEGORY':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,]),'IDENTIFIER':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[10,10,10,10,10,10,10,10,10,10,10,10,10,44,44,10,]),'BOOLEAN':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,]),'MINUS':([0,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36,37,38,44,45,46,47,],[4,22,-8,4,-11,-14,-15,-16,-17,-18,-19,4,-22,4,4,4,4,4,4,4,4,4,4,-20,4,22,22,22,22,22,22,-9,-10,-12,-13,-21,-18,-23,4,4,]),'LPAREN':([0,4,12,14,15,16,17,18,19,20,21,22,23,24,27,46,47,],[12,12,12,27,12,12,12,12,12,12,12,12,12,12,12,12,12,]),'FUNCTION':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,]),'$end':([1,2,3,5,6,7,8,9,10,11,13,25,28,29,30,31,32,33,34,35,36,37,38,45,],[0,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,-23,]),'EQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[15,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,15,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,15,-18,-23,15,]),'NOTEQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[16,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,16,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,16,-18,-23,16,]),'GREATER':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[17,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,17,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,17,-18,-23,17,]),'LESS':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[18,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,18,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,18,-18,-23,18,]),'GREATEREQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[19,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,19,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,19,-18,-23,19,]),'LESSEQUAL':([1,2,3,5,6,7,8,9,10,11,13,25,26,28,29,30,31,32,33,34,35,36,37,38,43,44,45,49,],[20,-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,20,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,20,-18,-23,20,]),'RPAREN':([2,3,5,6,7,8,9,10,11,13,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,48,49,],[-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,38,-30,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,45,-24,-25,-26,-28,-18,-23,-27,-29,]),'COMMA':([2,3,5,6,7,8,9,10,11,13,25,28,29,30,31,32,33,34,35,36,37,38,40,42,43,44,45,48,49,],[-1,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,-2,-3,-4,-5,-6,-7,-9,-10,-12,-13,-21,46,-26,-28,-18,-23,-27,-29,]),'PLUS':([2,3,5,6,7,8,9,10,11,13,25,28,29,30,31,32,33,34,35,36,37,38,44,45,],[21,-8,-11,-14,-15,-16,-17,-18,-19,-22,-20,21,21,21,21,21,21,-9,-10,-12,-13,-21,-18,-23,]),'TIMES':([3,5,6,7,8,9,10,11,13,25,34,35,36,37,38,44,45,],[23,-11,-14,-15,-16,-17,-18,-19,-22,-20,23,23,-12,-13,-21,-18,-23,]),'DIVIDE':([3,5,6,7,8,9,10,11,13,25,34,35,36,37,38,44,45,],[24,-11,-14,-15,-16,-17,-18,-19,-22,-20,24,24,-12,-13,-21,-18,-23,]),'ASSIGN':([44,],[47,]),} |
||||
|
||||
_lr_action = {} |
||||
for _k, _v in _lr_action_items.items(): |
||||
for _x,_y in zip(_v[0],_v[1]): |
||||
if not _x in _lr_action: _lr_action[_x] = {} |
||||
_lr_action[_x][_k] = _y |
||||
del _lr_action_items |
||||
|
||||
_lr_goto_items = {'expression':([0,12,27,46,47,],[1,26,43,43,49,]),'comparison':([0,12,15,16,17,18,19,20,27,46,47,],[2,2,28,29,30,31,32,33,2,2,2,]),'term':([0,12,15,16,17,18,19,20,21,22,27,46,47,],[3,3,3,3,3,3,3,3,34,35,3,3,3,]),'factor':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[5,25,5,5,5,5,5,5,5,5,5,36,37,5,5,5,]),'function_call':([0,4,12,15,16,17,18,19,20,21,22,23,24,27,46,47,],[13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,]),'args':([27,],[39,]),'arg_list':([27,],[40,]),'empty':([27,],[41,]),'arg':([27,46,],[42,48,]),} |
||||
|
||||
_lr_goto = {} |
||||
for _k, _v in _lr_goto_items.items(): |
||||
for _x, _y in zip(_v[0], _v[1]): |
||||
if not _x in _lr_goto: _lr_goto[_x] = {} |
||||
_lr_goto[_x][_k] = _y |
||||
del _lr_goto_items |
||||
_lr_productions = [ |
||||
("S' -> expression","S'",1,None,None,None), |
||||
('expression -> comparison','expression',1,'p_expression','expression_validator.py',355), |
||||
('expression -> expression EQUAL comparison','expression',3,'p_expression','expression_validator.py',356), |
||||
('expression -> expression NOTEQUAL comparison','expression',3,'p_expression','expression_validator.py',357), |
||||
('expression -> expression GREATER comparison','expression',3,'p_expression','expression_validator.py',358), |
||||
('expression -> expression LESS comparison','expression',3,'p_expression','expression_validator.py',359), |
||||
('expression -> expression GREATEREQUAL comparison','expression',3,'p_expression','expression_validator.py',360), |
||||
('expression -> expression LESSEQUAL comparison','expression',3,'p_expression','expression_validator.py',361), |
||||
('comparison -> term','comparison',1,'p_comparison','expression_validator.py',368), |
||||
('comparison -> comparison PLUS term','comparison',3,'p_comparison','expression_validator.py',369), |
||||
('comparison -> comparison MINUS term','comparison',3,'p_comparison','expression_validator.py',370), |
||||
('term -> factor','term',1,'p_term','expression_validator.py',377), |
||||
('term -> term TIMES factor','term',3,'p_term','expression_validator.py',378), |
||||
('term -> term DIVIDE factor','term',3,'p_term','expression_validator.py',379), |
||||
('factor -> NUMBER','factor',1,'p_factor','expression_validator.py',386), |
||||
('factor -> STRING','factor',1,'p_factor','expression_validator.py',387), |
||||
('factor -> FIELD','factor',1,'p_factor','expression_validator.py',388), |
||||
('factor -> CATEGORY','factor',1,'p_factor','expression_validator.py',389), |
||||
('factor -> IDENTIFIER','factor',1,'p_factor','expression_validator.py',390), |
||||
('factor -> BOOLEAN','factor',1,'p_factor','expression_validator.py',391), |
||||
('factor -> MINUS factor','factor',2,'p_factor','expression_validator.py',392), |
||||
('factor -> LPAREN expression RPAREN','factor',3,'p_factor','expression_validator.py',393), |
||||
('factor -> function_call','factor',1,'p_factor','expression_validator.py',394), |
||||
('function_call -> FUNCTION LPAREN args RPAREN','function_call',4,'p_function_call','expression_validator.py',422), |
||||
('args -> arg_list','args',1,'p_args','expression_validator.py',426), |
||||
('args -> empty','args',1,'p_args','expression_validator.py',427), |
||||
('arg_list -> arg','arg_list',1,'p_arg_list','expression_validator.py',434), |
||||
('arg_list -> arg_list COMMA arg','arg_list',3,'p_arg_list','expression_validator.py',435), |
||||
('arg -> expression','arg',1,'p_arg','expression_validator.py',442), |
||||
('arg -> IDENTIFIER ASSIGN expression','arg',3,'p_arg','expression_validator.py',443), |
||||
('empty -> <empty>','empty',0,'p_empty','expression_validator.py',450), |
||||
] |
||||
Loading…
Reference in new issue